Clustering. Definition Clustering is “the process of organizing objects into groups whose members are similar in some way”. A cluster is therefore a collection.

Slides:



Advertisements
Presentasi serupa
Perth Chart & Critical Path Method
Advertisements

K-Means Clustering.
Pengelompokan Jenis Tanah Menggunakan Algoritma Clustering K-Means
Minggu lalu Decision tree Bayesian Classification Ujian.
DATA DIRI DOSEN Nama : AFIJAL, S.Kom, M.Kom NIDN :
DATA MINING 1.
Pendahuluan Clustering adalah salah satu teknik unsupervised learning dimana kita tidak perlu melatih metoda tersebut atau dengan kata lain, tidak ada.
Applied Multivariate Analysis
Chapter 9 ALGORITME Cluster dan WEKA
Relation
Validitas & Reliabilitas
Pertemuan XIV FUNGSI MAYOR Assosiation. What Is Association Mining? Association rule mining: –Finding frequent patterns, associations, correlations, or.
ARRAY RUBY. PENDAHULUAN Ruby's arrays are untyped and mutable. The elements of an array need not all be of the same class, and they can be changed at.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
BUDAYA ORGANISASI (Organizational Culture)
Ruang Contoh dan Peluang Pertemuan 05
Pewarnaan graph Pertemuan 20: (Off Class)
Fuzzy for Image Processing
Sinyal dan Data Pertemuan 06 Matakuliah: H0484/Jaringan Komputer Tahun: 2007.
Pertemuan XIV FUNGSI MAYOR Assosiation. What Is Association Mining? Association rule mining: –Finding frequent patterns, associations, correlations, or.
PERTEMUAN KE-6 UNIFIED MODELLING LANGUAGE (UML) (Part 2)
Pertemuan 06 Sinyal dan Data
1 Pertemuan 24 Matakuliah: I0214 / Statistika Multivariat Tahun: 2005 Versi: V1 / R1 Analisis Struktur Peubah Ganda (IV): Analisis Kanonik.
1 Minggu 10, Pertemuan 20 Normalization (cont.) Matakuliah: T0206-Sistem Basisdata Tahun: 2005 Versi: 1.0/0.0.
1 Pertemuan 22 Matakuliah: I0214 / Statistika Multivariat Tahun: 2005 Versi: V1 / R1 Analisis Struktur Peubah Ganda (II): Analisis Faktor.
Pertemuan 9 : Pewarnaan graph
Shear Joints under eccentric loads Joints can and should be loaded in shear so that the fasteners see no additional stress beyond the initial tightening.
Algoritma-algoritma Data Mining Pertemuan XIV. Classification.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Grafika Komputer dan Visualisasi Disusun oleh : Silvester Dian Handy Permana, S.T., M.T.I. Fakultas Telematika, Universitas Trilogi Pertemuan 15 : Kurva.
STATISTIKA CHATPER 4 (Perhitungan Dispersi (Sebaran))
Clustering Suprayogi.
Datamining - Suprayogi
Pertemuan 06 Fungsi Analisis pada SIG
Fungsi Analisis pada SIG
Cartesian coordinates in two dimensions
Cartesian coordinates in two dimensions
Pengujian Hipotesis (I) Pertemuan 11
Clustering.
Clustering Best Practice
BY EKA ANDRIANI NOVALIA RIZKANISA VELA DESTINA
the formula for the standard deviation:
Pemrograman Berorientasi Objek
Analytical Hierarchy Process ( AHP )
Analisis Cluster.
BILANGAN REAL BILANGAN BERPANGKAT.
Algorithms and Programming Searching
REAL NUMBERS EKSPONENT NUMBERS.
PRODI MIK | FAKULTAS ILMU-ILMU KESEHATAN
Analisis Klastering K-Means Model Datamining Kelompok 1 Eko Suryana
UML- UNIFIED MODELING LANGUAGE
Contoh 4: Penerapan Konsep Sistem Fuzzy
Master data Management
Self-Organizing Network Model (SOM) Pertemuan 10
Metode Data Mining “ Self-Organizing Map [SOM] ” Taskum Setiadi ADVANCE MACHINE LEARNING STMIK Nusa Mandiri Jakarta2016 ADVANCE MACHINE LEARNING.
ANALISIS CLUSTER Part 1.
Pembelajaran tak-terbimbing dan klustering
Simultaneous Linear Equations
Struktur Sosial.
CLUSTERING.
K-MEANS ALGORITHM CLUSTERING
THE INFORMATION ABOUT HEALTH INSURANCE IN AUSTRALIA.
Algoritma & Pemrograman 1 Achmad Fitro The Power of PowerPoint – thepopp.com Chapter 3.
Pengelompokan Dokumen (Document Clustering)
Implementasi clustering K-MEANS (dengan IRIS dataset)
By : Rahmat Robi Waliyansyah, M.Kom
SIMILES. The comparison is carried out using the words ‘like’ as etc. Example : 1. as free as a bird. The word ‘free’ is compared with the word ‘bird’
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
Universitas Gunadarma
Transcript presentasi:

Clustering

Definition Clustering is “the process of organizing objects into groups whose members are similar in some way”. A cluster is therefore a collection of objects which are “similar” between them and are “dissimilar” to the objects belonging to other clusters.

Pengklusteran merupakan pengelompokan record, pengamatan, atau memperhatikan dan membentuk kelas objek-objek yang memiliki kemiripan. Beberapa algoritma pengelompokkan diantaranya adalah EM dan Fuzzy C- Means

Clustering Main Features Clustering – a data mining technique Usage: –Statistical Data Analysis –Machine Learning –Data Mining –Pattern Recognition –Image Analysis –Bioinformatics

Notion of a Cluster can be Ambiguous How many clusters? Four ClustersTwo Clusters Six Clusters

Distance based method In this case we easily identify the 4 clusters into which the data can be divided; the similarity criterion is distance: two or more objects belong to the same cluster if they are “close” according to a given distance. This is called distance-based clustering.

Limitations of K-means: Non-globular Shapes Original Points K-means (2 Clusters)

Limitations of K-means: Differing Sizes Original Points K-means (3 Clusters)

Types of Clustering –Hierarchical Finding new clusters using previously found ones –Partitional Finding all clusters at once

Partitional Clustering Original Points A Partitional Clustering

Hierarchical Clustering Traditional Hierarchical Clustering Non-traditional Hierarchical Clustering Non-traditional Dendrogram Traditional Dendrogram

Algoritma Pengelompokan K-Means Langkah-langkah algoritma K-Means: 1.Tentukan berapa kelompok yang akan dibuat sebanyak k kelompok. 2.Secara sembarang pilih k buah catatan yang ada sebagai pusat-pusat keompok awal. 3.Setiap catatan akan ditentukan pusat kelompok terdekatnya. 4.Perbarui pusat-pusat kelompok. 5.Pusat kelompok yang terdekat pada setiap catatan akan ditentukan, dan seterusnya sampai nilai rasio tidak membesar lagi.

Rumus Jarak dua titik: Between Cluster Variation (BCV): BCV=d(m 1,m 2 )+d(m 1, 3 )+d(m 2,m 3 ) Dalam hal ini, d(m i, j ) menyatakan jarak m i ke m j Within Cluster Variation (WCV): WCV=  (jarak pusat tiap cluster yang paling minimum) 2