Agenda Deskripsi perkuliahan Matematika Diskrit Topik Minggu 1:

Slides:



Advertisements
Presentasi serupa
Bilqis1 Pertemuan bilqis2 Himpunan bilqis3 Definisi: himpunan (set) adalah kumpulan obyek-obyek tidak urut (unordered) Obyek dalam himpunan disebut.
Advertisements

Fradika Indrawan,S.T – UAD – Pert I
Modul Matematika Diskrit
Pengantar IF2091 Struktur Diskrit
MATEMATIKA DISKRET By Septi Fajarwati, S.Pd.
Pengantar Matematika Diskrit
PENGENALAN MATEMATIKA DISKRIT
Pengantar Matematika Diskrit
Materi 4 : Aljabar Boolean Dosen : Ulil Hamida
Pengantar Matematika Diskrit
PENDAHULUAN STRUKTUR DISKRIT K-1 Program Studi Teknik Komputer
Pertemuan XIV FUNGSI MAYOR Assosiation. What Is Association Mining? Association rule mining: –Finding frequent patterns, associations, correlations, or.
TEKNIK PENGINTEGRALAN
Theory of Computation 2. Math Fundamental 1: Set, Sequence, Function
BLACK BOX TESTING.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
INDUKSI MATEMATIKA Perhatikan jumlah bilangan ganjil pertama :
Teori Matematika terhadap materi teori bahasa dan automata
Ruang Contoh dan Peluang Pertemuan 05
Pewarnaan graph Pertemuan 20: (Off Class)
Pertemuan 1 Konsep dalam Teori Otomata dan Pembuktian Formal
BAB 6 KOMBINATORIAL DAN PELUANG DISKRIT. KOMBINATORIAL (COMBINATORIC) : ADALAH CABANG MATEMATIKA YANG MEMPELAJARI PENGATURAN OBJEK- OBJEK. ADALAH CABANG.
MATEMATIKA DISKRIT DANI SUANDI, M.SI. FAKULTAS SAINS DAN TEKNOLOGI
Apakah Matematika Diskrit itu?
Statistika Mulaab,S,si M.kom Lab CAI Teknik Informatika xxxx Website Kuliah : mulaab.wordpress.com.
1 Pertemuan 11 The Manipulative part of the object data model (Lanjutan bagian 2) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
Pertemuan 9 : Pewarnaan graph
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
ANIFUDDIN AZIS Himpunan Fuzzy dan Operasi Dasar. Dari Himpunan Klasik ke Himpunan Fuzzy Misal U adalah semesta pembicaraan yang berisi semua kemungkinan.
Pengantar Matematika Diskrit dan Himpunan Pertemuan I
KOMPUTER DAN SISTEM INFORMASI Anifuddin Azis
Pengantar IF2091 Struktur Diskrit
KOMUNIKASI DATA Materi Pertemuan 3.
BAB 1 Logika Pengantar Logika
Induksi Matematika.
07/11/2017 BARISAN DAN DERET KONSEP BARISAN DAN DERET 1.
Cartesian coordinates in two dimensions
Cartesian coordinates in two dimensions
Matematika Diskrit (Discrete Mathematics)
Modul Matematika Diskrit Pertemuan ke-4
Pengantar Matematika Komputer
Pengujian Hipotesis (I) Pertemuan 11
Himpunan Fuzzy dan Operasi Dasar
Matematika Komputasi.
Citra Noviyasari, S.Si, MT
INTRODUCTION MATEMEMATIKA DISKRIT
VECTOR VECTOR IN PLANE.
Matematika Diskrit.
Materi 11 Teori Graf.
Teori Himpunan.
Kontrak Perkuliahan KALKULUS I Ayundyah Kesumawati Kode Mata Kuliah
Operator Pada C Amaludin Arifia, M.Kom.
BILANGAN REAL BILANGAN BERPANGKAT.
Logika Informatika Iwan Santosa, S.T., M.T. Teknik Informatika
REAL NUMBERS EKSPONENT NUMBERS.
RELASI Sub-bab 7.1.
Pengantar A Matematika Diskrit
Matematika Diskrit (Discrete Mathematics)
MATEMATIKA DISKRIT Sekolah Tinggi Ilmu Komputer Ambon
Pengantar Struktur Diskrit
Pengantar Matematika Diskrit
Disusun oleh : KARLINA SARI ( ) ALIFA MUHANDIS S A ( )
Pengantar Matematika Diskrit
Pengantar Matematika Diskrit
Pengantar IF2091 Struktur Diskrit
Pengantar Matematika Diskrit
Aplikasi Graph Minimum Spaning Tree Shortest Path.
Lesson 2-1 Conditional Statements 1 Lesson 2-1 Conditional Statements.
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
Wednesday/ September,  There are lots of problems with trade ◦ There may be some ways that some governments can make things better by intervening.
Transcript presentasi:

Agenda Deskripsi perkuliahan Matematika Diskrit Topik Minggu 1: Himpunan Operasi-operasi pada Himpunan Pembagian Kelompok dan Latihan Soal

Deskripsi Perkuliahan Referensi materi: GBPP (Garis-Garis Besar Program Pembelajaran) TI 101 Matematika Diskrit Tujuan instruksional: Mahasiswa memiliki pengetahuan, pemahaman, dan kemampuan untuk menerapkan dasar-dasar ilmu Matematika Diskrit dalam berbagai bidang kehidupan, khususnya di bidang ICT (Teknik Informatika, Sistem Komputer, dan Sistem Informasi) Mekanisme perkuliahan: Paparan teori: 2x50 menit Latihan soal (kelompok/individu): 50 menit Paparan dalam bahasa Indonesia, slide presentasi dalam bahasa Inggris (menyesuaikan dengan textbook)

Textbook R. Johnsonbaugh, Discrete Mathematics, Pearson International Edition (7th edition), 2009 K.H. Rosen, Discrete Mathematics and Its Applications, McGraw-Hill (6th edition),2006 S. Lipschutz, et. al, Schaum’s Outline of Theory and Problems of Discrete Mathematics, McGraw-Hill (3th edition), 2009

Ketentuan Penilaian Bobot masing-masing penilaian: Tugas Mandiri 30% Ujian Tengah Semester (UTS) 30% Ujian Akhir Semester (UAS) 40% Tugas Mandiri Quiz (minimal 2 kali) Diumumkan seminggu sebelumnya Penyelesaian soal-soal latihan (kelompok/individu)

Disiplin Perkuliahan Peringatan dari manajemen universitas tentang Kehadiran Maksimum absensi: 3x dari 14x pertemuan Siswa dapat gagal mengikuti UAS apabila prosentase kehadiran tidak terpenuhi Toleransi keterlambatan 15 menit Presensi diambil pada 15 menit awal perkuliahan Diperiksa kembali di akhir perkuliahan dengan validasi di euis.umn.ac.id (bersama dengan ketua/wakil ketua kelas) Mahasiswa yang terlambat dan dianggap absen tetap dapat mengikuti perkuliahan Apabila mahasiswa ada keperluan mendadak, hubungi dosen/BAAK untuk memperoleh dispensasi

Kenapa Mahasiswa ICT perlu belajar Discrete Mathematics (Matematika Diskret) Discrete mathematics is mathematics that deal with discrete objects  objects which are separated from each other, e.g. integers, propositions,sets,relations, functions,graphs, etc Foundation for ICT applications, e.g. : Analysis of algorithms Circuit design Unicast & multicast routing Computer security Database Deadlock analysis …

Pokok Bahasan (1) Minggu ke Topik 1 Konsep Himpunan Operasi-operasi pada himpunan 2 Proposisi Operator logika dan tabel kebenaran Implikasi dan bi-implikasi Tautologi, kontradiksi, dan kontingensi Argument dan aturan inferensi Quantifiers 3 Pembuktian langsung dan tidak langsung Metode pembuktian lainnya Strategi pembuktian Induksi Matematika 4 Fungsi Barisan dan strings Deret jumlahan dan kalian

Ujian Tengah Semester (UTS) Pokok Bahasan (2) Minggu ke Topik 5 Relasi Matriks relasi 6 Sistem bilangan Matematika Sistem bilangan biner, octal, dan hexadecimal Divisors dan prime numbers Algoritma Euclid 7 Dasar metode perhitungan Permutasi dan kombinasi Ujian Tengah Semester (UTS)

Pokok Bahasan (3) Minggu ke Topik 8 Peluang diskret Koefisien binomial Identitas kombinatorik 9 Algoritma rekursif Relasi rekurensi Penyelesaian relasi rekurensi Fungsi pembangkit 10 Graf dan terminologi graf Path dan cycle Euler cycle dan Hamiltonian cycle 11 Representasi graf Graf isomorfis Graf planar Permasalahan lintasan terpendek

Ujian Akhir Semester (UAS) Pokok Bahasan (4) Minggu ke Topik 12 Terminologi dan karakterisasi pohon Spanning Trees Binary Trees 13 Tree traversals Decision trees Pohon isomorfis Game trees 14 Kombinatorial sirkuit Aljabar Boolean Ujian Akhir Semester (UAS)

Set (Himpunan)

Set Definition: A set is unordered collection of objects. The objects in a set are called the elements, or members, of the set. A set is said to contain its elements. A = { a, b, c, d } B = { 1, 2, 3 } Notation: a is an element of the set: a  A f is not an element of the set: f  A

Describing a Set (1) { … } V is a set of all vowel in alphabet: {a, e, i, o, u} O is a set of odd positive integers less than 10: {1, 3, 5, 7, 9} P is a set of positive integer less than 100: {1, 2, 3, …, 99} D is a set of personal data: {Joko, student, UMN}  unrelated elements

Describing a Set (2) Set Builder O is a set of odd positive integers less than 10: O = {x | x is an odd positive integer less than 10} OR O = {x  Z+ | x is odd and x < 10} Z+ is the set of all positive integers

Set Builder: Describe the following sets {0, 3, 6, 9, 12} {-3, -2, -1, 0, 1, 2, 3} {m, n, o, p} {1, 2, 4, 8, 16}

Describing a Set: Common Notations Z = {…, -2, -1, 0, 1, 2, …} , the set of integers. Z+ = {1, 2, 3, …} , the set of positive integers. (N = {1, 2, 3, …} , the set of natural numbers) Znonneg ={0}  Z+ = {0, 1, 2, 3, …} , the set of non-negative integers. Q = {p/q | p  Z, q  Z, and q ≠ 0} , the set of rational numbers}. Q+ is the set of all positive rational numbers. Q+ = {x  R | x = p/q, for some positive integers p and q}. R = the set of real numbers, consisting of all point in a straight line.

U Describing a Set (3) Venn Diagram Rectangle: the universal set U Circle : sets, e.g. V U a •o e V •u •i

For every x, if x  A, then x  B For every x, if x  B, then x  A Equality Definition: Two sets are equal if and only if they have the same elements. That is, if A and B are sets then A and B are equal if and only if For every x, if x  A, then x  B For every x, if x  B, then x  A A = B Examples: A = {1, 3, 5} B = {5, 1, 3} C = {1, 1, 3, 3, 5} A = B ?  Yes B = C ?  Yes

Equality A = { X | X2 + X – 6 = 0 } B = { 2, 3 } A = B ? No  A ≠ B Yes

Empty Set & Singleton Definition: Empty set or null set is a set that has no elements. Notation: , { } Ex. The set of all positive integers that are greater than their squares. Singleton set is a set with one element. Ex. the set of positive odd integers less than 3: { 1 }

Subset Definition: The set A is said to be a subset of B if and only if every element of A is also an element of B. Notation: A  B Means: for every x, if x  A then x  B U A B

Subset: Theorem   S S  S Proof: Show that: for every x, if x   then x  S) Because the empty set contains no elements, it follows that x   is always false. It means that x    x  S is always true (you will learn the truth table for conditional statements in next week’s lecture)

Proper Subset Definition: The set A is a subset of B but A ≠ B Notation: A  B Means: A is a subset of B and A does not equal B Note : proper subset pasti subset tetapi subset belum tentu proper subset.

Subset: Examples Give examples of: A  B and B  C A  B and B  C

Equality of two sets Definition: IF A  B and B  A THEN A = B Example: A= { , {a}, {b}, {a, b}} B = {x | x is a subset of the set {a, b}} A = B

Finite Set and Cardinality Definition: Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S. Notation: | S | A is a set of odd positive integers less than 10. |A| = 5 S is a set of letters in alphabet. |S| = 26 B = {1, 1, 3, 5, 7} | B | = 4

Infinite Set Definition: A set S is said to be infinite if it is not finite. Example: the set of positive integers.

Power Set Definition: Given a set S, the power set of S is the set of all subsets of the set S. Notation: P(S) What is the power set of the set {0, 1, 2}? P({0, 1, 2}) = {, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}

Cardinality of Power Set |P(S)| = 23 = 8

Set Operations (Operasi-operasi pada Himpunan)

Union Definition: Let A and B be sets. The union of the sets A and B, denoted by A  B, is the set that contains those elements that are either in A or in B, or in both. Notation: A  B = {x | x  A or x  B}

Union: Example A = {1, 3, 5} B = {1, 2, 3} A  B = {1, 2, 3, 5}

Intersection Definition: Let A and B be sets. The intersection of the sets A and B, denoted by A  B, is the set containing those elements in both A and B Notation: A  B = {x | x  A and x  B}

Intersection: Example B = {1, 2, 3} A  B = {1, 3}

Difference Definition: Let A and B be sets. The difference of A and B, denoted by A – B, is the set containing those elements that are in A but not in B. it is also called the complement of B with respect to A. Notation: A – B = {x | x  A and x  B}

Difference: Example A = {1, 3, 5} B = {1, 2, 3} A – B = { 5 } In general : A – B ≠ B – A

Disjoint Definition: Two sets are called disjoint if their intersection is the empty set. Notation: A  B =  A = {1, 3, 5} B = {2, 4, 6} A  B = 

Cardinality of Union Definition: The cardinality of a union of two finite sets A and B is | A  B | Notation: | A  B | = | A | + | B | - | A  B |

Complement Definition: Let U be the universal set. The complement of the set A, denoted by Ā, is the complement of A with respect to U or U – A. Notation: Ā = U – A ={x | x  A}

Example A = {a, e, i, o, u} U – A = all other alphabets Let A be the set of positive integers greater than 10. U is the set of all positive integers. U – A = { 1, 2, 3, …, 10}

Example A group of 165 students. 8 are taking calculus, computer science and psychology 33 are taking calculus, computer science 20 are taking calculus and psychology 24 are taking computer science and psychology 79 are taking calculus 83 are taking psychology 72 are taking computer science

Example A group of 165 students. 8 are taking calculus, computer science and psychology 25(33-8) are only taking calculus, computer science 12(20-8) are only taking calculus and psychology 16(24-8) are only taking computer science and psychology 34(79-25-12-8) are only taking calculus 47(83-12-16-8) are only taking psychology 23(72-25-16-8) are only taking computer science

Set Identities Table

Ordered n-tuple Definition: The ordered n-tuple (a1, a2, …, an) is the ordered collection that has a1 as its first element, a2 as its second element, …, and an as its nth element. Two ordered n-tuples are equal if and only if each corresponding pair of their elements is equal. (a1, a2, …, an) = (b1, b2, …, bn) if and only if ai=bi

Cartesian Products Definition: Let A and B be sets. The Cartesian product of A and B, denoted by A  B, is the set of all ordered pairs (a, b), where a  A and b  B. Notation: A  B = {(a,b) | a  A  b  B}

Cartesian Products: Example B = {1, 2} C = {0, 1, 2} A  B  C = ? {(0, 1, 0), (0, 1, 1), …, (1, 2, 2)} Students  Courses |Students| = m |Courses| = n |Students  Courses| = ?

Exercises Show that: A  (B  C) = (C  B)  A A  (A  B) = A Venn Diagram: A  (B – C) (A  B)  (A  C)

Latihan Soal & Pembagian Kelompok