1 Microbes  Produce Antibiotics Antibiotics  secondary metabolites  inhibit growth at low concentration Alexander Fleming (1929)  Penicillium notatum.

Slides:



Advertisements
Presentasi serupa
RNA STRUCTURE ARNI AMIR.
Advertisements

Bahan Genetik organisme pd umumnya adalah DNA.
Penisilin Antibiotika pertama yang ditemukan oleh Alexander fleming 1928 Dihasilkan dari Penisilium notatum. Mekanisme kerja : menghambat sintesa dinding.
SINTESIS PROTEIN Drs. Sutarno, MSc.PhD.
Isolation and Screening of Microorganisms
Pertumbuhan dan pengendalian mikroorganisme
Aminoacyl tRNA synthetase (aaRS)
B. ANTIBIOTIKA KLASIFIKASI ANTIBIOTIKA 1. BERDASARKAN CARA KERJA a
KOMPONEN PANGAN (FOOD COMPOUND) PERTEMUAN III. TERDIRI DARI: A. KOMPONEN GIZI (NUTRIENT COMPOUND)
ASAM NUKLEAT ADALAH GOLONGAN SENYAWA NUKLEOPROTEIN, DARI PROTEIN KOMPLEK (CONYUGATED PROTEIN), YANG TERSUSUN DARI SENYAWA NUKLEOTID. CONTOH SENYAWA ASAM.
TRI SETYAWATI DEPARTEMEN BIOKIMIA FKIK TADULAKO
3.
Antimikroba Gatot Adi Nugroho.
BAKTERIOSIN Minggu-2.
RESISTENSI MIKROORGABISME
Antibiotika.
I Nyoman P. Aryantha SITH - ITB.  Materials used as food for growing microorganisms, part of the culture medium along with chemicals and other trace.
Disusun oleh: Azis Setyono (131176)
RIBOSOM.
Hardoko FAKULTAS PERIKANAN DAN ILMU KELAUTAN UNIVERSITAS BRAWIJAYA
PROTEIN AND ANTIOXIDANT MERYNDA INDRIYANI SYAFUTRI PS THP JUR TPN FP UNSRI.
Dissolved Oxygen The Good Gas. Photosynthesis: Your one-stop shop for all of your oxygen needs! Carbon Dioxide (from air) Water (from ground) Oxygen (to.
PENDAHULUAN Protein merupakan zat organik komplek yang molekulnya sangat besar. Dalam menu makanan protein sebagai sumber asam amino baik asam amino essensial.
“Antibiotik sebagai Salah Satu Produk Mikrobiologi Industri “
Genetika Bakteri dan Virus
Antibakteria DAN Antifungi
“Bidang Kajian Bioteknologi”
MOLECULAR OF BIOTECHNOLOGY
SINTESIS PROTEIN Syarat sintesis protein :
Metabolisme asam nukleat dan nukleotida
Asam Amino dan Protein.
Medium fermentasi.
SINTESIS PROTEIN Syarat sintesis protein :
METABOLISME PROTEIN.
Penggunaan Mikroba dalam Bioteknologi
Metabolisme Karbohidrat-2 (Glikolisis, Fermentasi alkohol dan fermentasi asam laktat) (5) Drs. Sutarno, MSc., PhD.
Nukleosida: Basa purin / pirimidin + ribosa/deoksiribosa Nukleotida:
Metabolisme asam nukleat II
Sintesis asam lemak Makanan bukan satu-satunya sumber lemak kita
TRANSLASI Sintesis Protein.
Bahan Genetik organisme pd umumnya adalah DNA.
ASAM NUKLEAT ADALAH GOLONGAN SENYAWA NUKLEOPROTEIN, DARI PROTEIN KOMPLEK (CONYUGATED PROTEIN), YANG TERSUSUN DARI SENYAWA NUKLEOTID. CONTOH SENYAWA NUKLEOTID.
“Bidang Kajian Bioteknologi”
DESKRIPSI AWAL Metabolit diklasifikasikan menjadi dua, yaitu metabolit primer dan metabolit sekunder. Metabolit primer yang dibentuk dalam jumlah terbatas.
BAB 8 Karbohidrat, Protein, dan Biomolekul Standar Kompetensi
KARAKTERISTIK PROTEIN
PENDAHULUAN Sejarah berkembangnya mikrobiologi industri :
METABOLISME KARBOHIDRAT DAN LEMAK
Bioteknologi Klasik Dan Modern
Genetika Mikroorganisme
Biosintesis Lipida (Lipogenesis)
ANTIBIOTIKA SUBSTANSI YG DIHASILKAN OLEH MIKROORGANISME YG MENGHAMBAT PERTUMBUHAN MIKROORGANISME LAIN PADA KONSENTRASI RENDAH ALEXANDER FLEMING MENEMUKAN.
SINTESA PROTEIN Adinda Nurul Huda M, SP, MSi
IKATAN OBAT-RESEPTOR SUPRIANTO, S.Si., M.Si., Apt.
KARAKTERISTIK PROTEIN
Antibiotik yang berasal dari Bakteri
BIOTEKNOLOGI Dengan menggunakan Mikroorganisme
KELOMPOK 2 DESTIARKO ( ) PUTRI MUSTIKAWATI ( )
Resistensi mikroorganisme dan penanganannya
Metabolisme Menurut Pandangan Islam
ANTIBIOTIK Nama : Romi Febriansyah NPM : Antibiotik Antibiotik adalah jenis antimikroba digunakan dalam pengobatan dan pencegahan infeksi bakteri.
Is it different ? HEREDITY SUBSTANCES HEREDITY SUBSTANCES.
Klasifikasi enzim.
Hardoko FAKULTAS PERIKANAN DAN ILMU KELAUTAN UNIVERSITAS BRAWIJAYA
ASAM NUKLEAT ADALAH GOLONGAN SENYAWA NUKLEOPROTEIN, DARI PROTEIN KOMPLEK (CONYUGATED PROTEIN), YANG TERSUSUN DARI SENYAWA NUKLEOTID. CONTOH SENYAWA NUKLEOTID.
Metabolisme asam nukleat II
STRUKTUR DAN EKPRESI GEN (mekanisme pengaturan sifat) SECARA MOLEKULAR
GENETIKA MIKROBA.
4.3Mendeskripsikan struktur, tatanama, penggolongan, sifat dan kegunaan makromolekul (polimer, karbohidrat, dan protein). 4.4Mendeskripsikan struktur,
ANTI INFEKSI KELOMPOK : 2. PENGERTIAN OBAT ANTI INFEKSi ( ANTIBIOTIK) Antibiotika ialah zat yang dihasilkan oleh mikroba terutama fungi, yang dapat menghambat.
Transcript presentasi:

1 Microbes  Produce Antibiotics Antibiotics  secondary metabolites  inhibit growth at low concentration Alexander Fleming (1929)  Penicillium notatum  inhibit staphlococcus Begining of Antibiotic era  Development :  513 atb  4076 atb an  6000 atb Antibiotics Production  Fermentation Semisynthetic Microbes producing antibiotics:  Bakteria, Actinomycetes, & Fungi Fungi : -Phycomycetes  14 atb -Ascomycetes  299 atb -Aspergillacea  242 atb  Penicillium  123 atb  Aspergillus  115 atb -Basidiomycetes  140 atb -Fungi inperfecti  315 atb -Moniliales  269

-Eubacteriales  274 atb Microbes producing antibiotics: Bakteria : -Pseudomodales  87 atb -Pseudomodaceae  84 -Enterobacterilaceae  36 atb -Micrococcaceae  16 atb -Lactobacillaceae  28 atb -Bacillacea  171 atb  Bacillus  167 atb Microbes producing antibiotics: Bakteria : -Actinomycetales  2078 atb -Mycobacteriaceae  4 atb -Actinoplanaceae  18 atb -Streptomycetaceae  1950 atb - Streptomyces  1922 atb -Micromonosporaceae  41 atb -Thermoactinomycetaceae  17 atb -Nocardiaceae  48 2

3 Classification of Antibiotics: 1. Carbohydrate Atb - pure sugar  nojimisin - aminoglucoside  streptomicin - Ortomisine  Everninomisin - N-glicoside  sterptotrisin - C-glucoside  Vancomisin - glicolipid  Moenomisin 2. Macrocyclic lactone - macrolide Atb  erytromisin - atb polyene  Candisidin - ansamisin  Rifamisin - Mackrotetrolide  tertranamisin 3. quinoneAtb - tetrasiklin  tertrasiklin - anthrasiklin  adriamisin - naftoquinon  actinorhodin - benzoquinon  mitomisin 4. Peptide & amino acid - amino acid derivate  cycloserin - β-laktam  penicillin - peptide  basitrasin - chromopeptide  actinomisin - Chelating peptide  bleomisin Classification of Antibiotics:

4 5. Heterocyclic + nitrogen - nukleoside  polymixinine 6. Heterocyclic + oksigen - polyeter  monensin 7. Alicyclic derivates - cycloalkana derivate  sikloheksimid - steroid  fusidate acid 8. Aromatic - benzene derivate  kloramphenikol - aromatic ether  novobiosin 9. Alifatic Atb - phosphorous compound  phosphomisine Antibiotic Application:  Spektrum atb : - broad  active for many organisms - narrow  active for certain organism 1. Antitumor :  cytostatic agent 2. Plant pathogens:  the first: - streptomisine  Xanthomonas oryzae Pseudomonas 3. Food Preservative :  regulation for their use  piramisin : - food suface - fungiside  tylosin : - effective for bacillus spora  nisin : effective for clostridia Canned food

Germ free Application  regulation !!! Antibiotic Application: 4. Animal Feed :  trigger animal growth 5. Study of biochemistry & molekular biology :  selective inhibitors: - to study cell function -DNA replication - transkription -Translation -Cell wall synthesis Economic value of antibiotics:  Production more than ton per year  1980: selling value + $ 4.2 billion  US + $ 1 billion per year:  1. Cephalosporine 2. Tetracycline  For animal feed: + $ 100 million per year -before 1960 : 5 % new atb isolates were used for terapheutic -then  many isolates were found - % Atb marketable: : 2.6 % –1977 : 1 % High cost of production & clinic assays 5

Hugh number of atb were already found Why exploration still cunducted ???  Natural Atb are not optimal for terapheutic  need to develop: - to increase activity - to reduce side effects - to increase spectrum - to increase selectivity  Resistant development  Chemical Modification  Genetic Modification : - mutasynthesis - DNA rekombinant - fusi protoplasm β-Laktam Antibiotics  Penisilin  Cephalosporin Peptide Antibiotics  Cephamisin Efective Antibiotics Penilisine: -Fleming (1929)  Penicillium notatum -Isolated in Firstly being use in Produced by : - Penicillium - Aspergillus 6

7 Natural Penisiline:  effective to many Gram positive bacteria  acid labile  inactivated by penisiline β-laktamase Β-laktam ring inhibit peptidoglikan synthesis  target: transpeptidase & D-alanine carboksipeptidase Polimerase peptidoglican inhibited  Inhibit growing cells  Not inhibit not growing cells Basic structure of penisiline:  6- aminopenisilic acid (6-APA) Compose of thiazolidin ring & β-laktam ring 6-APA containing many acyl groups Fermentation without acyl precursor  produce many natural penisilines Only benzilpenisiline useful for terapeutics + acyl prekursor  produce expected peniiyline

Residu gugus akil6-asam aminopenisilat Cincin β-laktam Cincin thiazolidin Penisiline structure: Commercial production: - natural  Penisilin G,V, & O -semisynthetic:  Penisilin G with chemical or enzimatic Split  6-APA Derivate contruction  + acyl Penisiline acylase 8

Biosynthesis: β-laktam-thiazolidine rings ;  contructed from L-cystein & L-valin  non ribosomal process : tripeptida 2 aa & L-α-asam aminoadipat (L-α-AAA) Product I from cyclication : isopenisilin N (biochemical reaction has not known yet) Benzilpenisiline:  alteration of L-α-AAA with activated penilacetate acid HOOC-CH-CH 2 -CH 2 -CH 2 -COOH Isopenilisin N S N COOH L-α-AAA – N O NH 2 L-α-Asam Aminoadipat (L-α-AAA) Cys L-α-AAA-Cys Val L-α-Aminoadippyl-Cysteinil-D-Valine 2 steps cyclication H Penisilin transakilase fenilasetat L-α-AAA-CoA-SH S N COOH O Benzil-penisilin 9 H - CH 2 -CO – N Biosynthesis of penisiline: Penicillium chrysogenum

Biosynthesis of penisilin:  affected by [fosfat]  repressed by glucose Fermentation use lactose  slow metabolisms of sugar Strain development: Production:  Fleming strain = 2 IU/ml  now = IU/ml Peningkatan dari g/l  50 g/l Strain selection & mutagenesis program Starting in 1943 Method of production: Penisiline G & V  produced by submerged fermentation  capacity – liters  aerobic  O 2 supply limitation 10

11 Growth Curve of penisiline production :  produksi selama 40 jam  Doubling time 6 jam: -pembentukan biomassa  Dg fed-batch: - spi 120 – 160 jam kembali

12 kembali

13 kembali

Cephalosporine  β-laktam + dihidrothiazin rings Cephalosporium acremonium : - isolation of atb in strain isolation in 1945 Acremonium chrysogenum  - Cephalosporin  - Penisilin N  Cephalosporin steroid P1-P5 Fungi: - Emericellopsis - Paecilomyces Streptomyces : S. lipmanii S. clavuligerus S. lactamdurans 14

15 Characteristics: - broad spectrum - low Toxicity - ~ ampisiline - resistant to penisiline beta laktamase - not resistant to cephalosporin beta laktamase

16 Biosynthesis: Low [lisin] Production increased

-Medium :- corn steep liquor Method of Production :  similar with penisiline  Fermentation: - growth phase 90 hour -Up to 90 hours, high consumption of O 2  need high aeration -90 – 160 hours  low consumption of O 2 -pH 7 -Temp 25 – 28 C - meat meal - sucrose, glucose - ammonium acetate  chemically: - from penisiline  price of penisiline  low New β-laktam:  derivated from semisintetic -Nokardisin: - monosiklik β-laktam - efektif pd Gram – - Nocardia uniformis - Streptomyces alcalophilus -Klavulanic acid: - β-laktam-oxazolidin - not efektive - inaktivation by β-laktamase ireversibel - Streptomyces clavuligens - aplikasi kombinasi  aktivitas ningkat -Thienamisin : - β-laktam-pyrrolin - efektive to Gram – & + - inaktivation by β-laktamase - Streptomyces cattleya - not stable  depeloped fro stability 17

Amino acid & peptide Atb:  Amino acid derivates : - sikloserin - azoserin  β-laktam  Chromopeptide  Depsipeptide  Linier & cylic peptide D-sikloserin:  D-4-amino-3-isoxazolidone  natural & synthetic - S. orchidoceus - S. lavendulae - S. garyphalus - S. roseochromogenes - Inhibit cell wall synthesis  inhibit alanine racemase - enzyme for alanine production -Efective to mycobacterium  M. tubercolosis -for TBC; combination with isotinate hidrazine & rifampisin or streptomisin Aktinomisin:  atb chromopeptida -fenoksazon-kromofor  unit dg pentapeptida-lakton  as. Amino bervaryasi -hambat RNA polimerase -Sangat toksik  rusak liver & ginjal -Utk tumor/kanker 18

Biosintesis: Atb depsipeptida: Subunit:  as. Amino  as. hidroksil # Valinomisin: - nilai ekonomi rendah - digunakan pd penelitian biokimia  hambat fosforilasi oksidatif  carrier K + - S. fulvissimus 19

20 # Virginiamisin: - efektif Gram + - pemicu pertumbuhan ternak unggas, babi, sapi - S. virginiae Atb peptida linier & siklik: -MO :  Bacillus  sebagian besar atb peptida  Streptomyces -BM : 270 – Sebagian besar siklik - di Bacillus produksi saat sporulasi  berperan dalam proses sporulasi -Aplikasi: terbatas  toksik  obat luar - Gramisidin - Tirosidin - Basitrasin - polimiksin  infeksi Gram – - viomisin - Capreonisin Luka & luka bakar TBC

Basitrasin: A : BM B : BM C: BM nilai ekonomi penting -Produksi th ton -Obat luar dan makanan ternak -Bacillus lincheniformis -Aktivitas  hambat sintesis dinding sel  sintesis peptidoglikan Biosintesis:  tidak melibatkan ribosom, mRNA, & tRNA  komplek multienzim dinamakan: “MESIN THIOTEMPLATE”  ATP & Mg 2+ 21

22 “MESIN THIOTEMPLATE” Metode produksi:

Atb Karbohidrat:  Turunan gula & glikosida Nojirimisin:  efektif thd Sarcina lutea & Xanthomonas oryzae  aktif menghambat α & β glukosidase dan amilase 23

24 Atb Karbohidrat:  Efektif pd Gram –  Utk infeksi akut  Toksik  kerusakan ginjal  Efek samping: kurang pendengaran

25 Streptomisin:  Aktivitas : 1. Hambat sintesis protein  ikat unit 12S dari subunit 30 S  salah kode & baca  12 S situs aktif pengikatan aminoakil-tRNA & tMet-tRNA 2. Rusak membran sel  hambat translokasi peptidil-tRNA  kebocoran molekul BM kecil  Biosintesis:  banyak enzim yg diketahui tapi belum dimengerti benar

26 Metode produksi: -fermentasi :  l  suhu 28 – 30 C  pH 7  waktu 4 – 7 hari  sumber C : pati/dekstrin  sumber N : soy meal

27 Atb makrosiklik lakton:  Efektif pd Gram +  Hambat sintesis protein  ikat subunit ribosom 50 S  S. erythreus -Eritromisin

28

Metode produksi: -fermentasi submerged:  glukosa  soy meal  (NH 4 ) 2 SO 4  NaCl  CaCO 3  pH 50 g/l 30 g/l 3 g/l 5 g/l 6 g/l 7 Tetrasiklin:  Struktur dasar cincin naftalena  Pengguanaan luas  Spektrum luas: Gram +, -, riketsia, mycoplasma, spiroket, klamidia  Aktivitas: hambat sintesis protein  subunit 30S: hambat ikatan aminoakil-tRNA ke situs A ribosom -aplikasi : - manusia - veteriner - ternak: unggas, babi - pengawetan : daging, unggas, ikan 29

30

31 Pengembangan:  Rekayasa genetik ? -Transformasi  Streptomyces -Antibiotik baru ???