Metode Numerik.

Slides:



Advertisements
Presentasi serupa
Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi,
Advertisements

DERET TAYLOR & ANALISIS GALAT
Matematika rekayasa TL 2105 rofiq iqbal.
METODE NUMERIK EDY SUPRAPTO 1.
By: NI WAYAN SUARDIATI PUTRI, S.Pd, M.Pd
METODE NUMERIK Buku : Metode Numerik untuk Teknik
AKAR PERSAMAAN NON LINEAR
METODE NUMERIK „Hampiran dan Galat”
AKAR PERSAMAAN NON LINEAR
AKAR – AKAR PERSAMAAN Penyelesaian suatu fungsi ¦(x) = ax2 + bx + c = 0 pada masa “Pra Komputer” dapat dilakukan dengan cara : Metode Langsung (analitis);
METODE NUMERIK Merupakan suatu teknik yang digunakan untuk merumuskan / memformulasi masalah matematis agar dapat dipecahkan memakai operasi hitung. Metode.
1. PENDAHULUAN.
Deret Taylor dan Analisis Galat
3. HAMPIRAN DAN GALAT.
Algoritma Pemotongan Algoritma Gomory Langkah 1 x3* = 11/2 x2* = 1
METODE NUMERIK.
4. SOLUSI PERSAMAAN NON-LINIER.
4. SOLUSI PERSAMAAN NON-LINIER.
DERET TAYLOR DAN ANALISIS GALAT
1. 7 Faktorisasi Persamaan Kuadrat, ax2 + bx + c dengan a 1
BAB II Galat & Analisisnya.
ANALISIS GALAT (Error) Pertemuan 2
DERET TAYLOR dan ANALISIS GALAT Pertemuan-2
5. SOLUSI PERSAMAAN NON-LINIER.
Metode Numerik Analisa Galat & Deret Taylor
TEORI KESALAHAN (GALAT)
Metode Numerik & Komputasi (TKE1423) Dodi , MT
Mata Kuliah Metode Numerik Semester 6 (2 SKS)
METODE NUMERIK Kesalahan / Error
BAB II : PENYELESAIAN AKAR-AKAR PERSAMAAN
Pendekatan dan Kesalahan
DERET TAYLOR DAN ANALISIS GALAT
Kesalahan Pemotongan.
PERSAMAAN non linier 3.
METODE NUMERIK PRESENTED by DRS. MARZUKI SILALAHI.
Fika Hastarita Rachman Semester Genap 2011/2012
Akar-Akar Persamaan.
Metode numerik secara umum
ANALISA NUMERIK 1. Pengantar Analisa Numerik
oleh Ir. Indrawani Sinoem, MS.
METODE NUMERIK MUH. FITRULLAH, ST. Buku : Metode Numerik untuk Teknik
Sistem Bilangan dan Kesalahan
Metode Numerik Analisa Galat & Deret Taylor
Matematika rekayasa TL 2105 rofiq iqbal.
METODE NUMERIK AKAR-AKAR PERSAMAAN.
PERTEMUAN 1 PENDAHULUAN
AKAR PERSAMAAN Metode Pengurung.
Akar-akar Persamaan Non Linier
BAB II Galat & Analisisnya.
Metode Numerik Oleh: Swasti Maharani.
Metode Numerik (3 SKS) Kuliah pertama
AKAR PERSAMAAN NON LINEAR
Galat Relatif dan Absolut
METODE NUMERIK IRA VAHLIA.
Program S1 Teknik Informatika Sekolah Tinggi Teknologi Nurul Jadid
ORIENTASI PERKULIAHAN
Materi I Choirudin, M.Pd PERSAMAAN NON LINIER.
Pendekatan dan Kesalahan
“ METODA POSISI SALAH ATAU PALSU “
METODE NUMERIK MENGHITUNG KESALAHAN.
(Pertemuan 1) Oleh : Wiwien Widyastuti
Pendahuluan Metode Numerik Secara Umum
AKAR-AKAR PERSAMAAN Muhammad Fitrullah, ST
METODE GRAFIS.
Bab 2 AKAR – AKAR PERSAMAAN
METODE NUMERIK „Pendekatan dan Analisa Kesalahan”
Sistem Bilangan dan Kesalahan
MATA KULIAH: METODE NUMERIK
METODE NUMERIK (3 SKS) STMIK CILEGON.
DERET TAYLOR DAN ANALISIS GALAT
Transcript presentasi:

Metode Numerik

SAP/Silabi Definisi Metode Numerik Metode-metode prakomputer Pengembangan perangkat lunak Algoritma Hampiran dan Galat Metode-metode numerik  metode pengurung dan metode terbuka Bagi dua – posisi palsu NR - Secant

Apa itu metode numerik? Metode numerik adalah teknik-teknik yang digunakan untuk memformulasikan masalah matematis agar dapat diselesaikan dengan operasi perhitungan. Terdapat berbagai ragam metode numerik  SATU KESAMAAN CIRI yakni : mencakup sejumlah besar perhitungan yang MENJEMUKAN Perkembangan komputer digital yang cepat dan berdayaguna  peranan metode numerik dalam penyelesaian masalah rekayasa telah meningkat secara dramatis.

Metode-metode Prakomputer Metode analitis atau eksak.  penyelesaian ini seringkali berguna untuk memberikan wawasan unggul mengenai perilaku beberapa sistem. Tetapi, peneyelesaian analitis hanya dapat diturunkan untuk sejumlah terbatas kelas-kelas masalah Penyelesaian Grafis.  memberikan ciri perilaku sistem. Penyelesaian grafis tanpa bantuan komputer sangat membosankan Kalkulator manual dan Slide rule  untuk mengimplementasikan metode numerik. Walaupun dalam teori pendekatan ini sudah cukup sempurna, tetapi dalam kenyataannya ditemukan beberapa kesukaran; dan perhitungan secara manual sangat lambat dan membosankan.

Proses pengembangan perangkat lunak Komputer hanya berguna jika dilengkapi dengan perintah-perintah yang seksama. Perintah-perintah ini adalah PERANGKAT LUNAK. ALGORITMA Pengembangan yang mendasari logika program Penulisan program dalam bahasa komputer Kompilasi Program Pencarian dan pengujian Pemastian bahwa program bebas galat dan terandalkan Membuat program mudah digunakan dan dipahami Dokumentasi Penyimpanan dan Perawatan Menyimpan program dan memperbaikinya sesuai pengalaman

Ciri algoritma yang baik: Desain Algoritma Algoritma merupakan rentetan langkah loogika yang diperlukan untuk melakukan suatu tugas tertentu seperti misalnya menyelesaikan masalah. Ciri algoritma yang baik: Deterministik  tidak ada yang tertinggal untuk ditebak Prosesnya harus selalu berakhir Algoritma harus cukup umum untuk menangani keperluan apapun.

Bagan Alir Bagan alir adalah pernyataan visual atau grafis suatu algoritma. Bagan alir menggunakan deretan blok dan anak panah, yang masing-masing menyatakan operasi atau langkah tertentu dari sebuah algoritma

Lambang-lambang bagan alir Ujung / terminal Masukan / keluaran Proses Keputusan Penghubung ke halaman sama Penyambung ke halaman lain

Contoh Begin 2 1 1 End 2 Halaman 1 Halaman 2

Hampiran dan Galat Kecerobohan Galat perumusan atau model Bentuk galat numerik: Galat Pembulatan Disebabkan oleh fakta bahwa komputer hanya dapat menyatakan besaran sejumlah berhingga angka Galat Pemotongan Ketidaksesuaian yang diperkenalkan oleh fakta bahwa metode numerik menerapkan suatu hampiran untuk menyatakan operasi- operasi matematis dan besaran yang eksak. Galat yang tidak secara langsung berkaitan dengan metode numerik Kecerobohan Galat perumusan atau model Ketidakpastian data

Definisi Galat Galat numerik timbul dari penggunaan hampiran (aproksimasi) untuk menyatakan operasi besaran matematis yang eksak. Ini mencakup galat pemotongan akan terjadi jika aproksimasi digunakan untuk menyatakan suatu prosedur matematis Dan galat pembulatan akan terjadi jika bilangan aproksimasi digunakan untuk menyatakan bilangan eksak

Hubungan antara hasil eksak dan aproksimasi... Nilai sejati (true value) = aproksimasi + galat Atau: Et = nilai sejati – aproksimasi Et galat sejati (true error) Kelemahan definisi ini adalah bahwa tingkat besaran dan nilai yang diperiksa sama sekali tidak diperhatikan. Misalnya: galat 1 cm jauh lebih berarti jika yang diukur adalah paku ketimbang jembatan.

εt= x 100% εt menunjukan persen galat realtif yang sejati Satu cara untuk memperhitungkan besarnya besaran yang sedang dievaluasi adalah menormalkan galat terhadap nilai sejati: Galat relatif pecahan = Galat relatif dapat juga dikalikan dengan 100% εt= x 100% εt menunjukan persen galat realtif yang sejati Galat Nilai sejati Galat Nilai sejati

Contoh Andaikan anda ditugaskan untuk mengukur panjang sebuah jembatan dan sebuah paku masing-masing 9999 dan 9 cm. Jika nilai sejati masing-masing adalah 10000 dan 10 cm, hitung (a) galat dan (b) persen galat relatif untuk setiap kasus Penyelesaian Galat untuk pengukuran jembatan Et = 10000 – 9999 = 1 cm Untuk paku Et = 10 – 9 = 1 cm Persen galat relatif untuk jembatan εt = x 100% = 0,01% untuk paku εt = x 100% = 10% Jadi, walaupun kedua pengukuran mempunyai galat 1 cm, tetapi galat realtif untuk paku jauh lebih besar. KESIMPULAN  pengukuran jembatan telah dikerjakan dengan layak, sedangkan taksiran untuk paku masih perlu dipertanyakan 1 10000 1 10

Galat terhadap aproksimasi Dalam metode numerik, nilai sejati hanya akan diketahui bilamana fungsi yang ditangani berupa fungsi yang dapat diselesaikan secara analitis. Kasus yang demikian merupakan kasus yang khas. Namun dalam dunia nyata, tentu saja jawaban sejati tidak diketahui sebelumnya. Untuk situasi-situasi ini, alternatifnya adalah menormalkan galat dengan menggunakan taksiran terbaik yang tersedia dari nilai sejati, yaitu terhadap aproksimasi itu sendiri, seperti dalam persamaan berikut: εa = x 100% Salah satu tantangan metode numerik adalah menentukan taksiran galat tanpa mengetahui nilai sejatinya. Misalnya metode numerik tertentu memakai pendekatan secara iterasi untuk menghitung jawaban. Galat aproksimasi aproksimasi

Dalam pendekatan yang demikian, suatu aproksimasi sekarang dibuat berdasarkan aproksimasi sebelumnya. Proses ini dilakukan secara berulang, atau ITERASI, dengan maksud secara beruntun menghitung aproksimasi yang lebih dan lebih baik. Untuk kasus yang demikian, galat seringkali ditaksir sebagai selisih antara aproksimasi sebelumnya dengan yang aproksimasi sekarang. Jadi persen galat relatif ditentukan sesuai persamaan berikut: εa = x 100% Aproksimasi sekarang – aproksimasi sebelumnya Aproksimasi sekarang

Akar-akar persamaan Rumus kuadrat .................... (1) Untuk menyelesaikan .....................(2) Nilai-nilai yang dihitung menggunakan persamaan (1)dinamakan akar dari persamaan (2). Akar-akar tersebut menggambarkan nilai-nilai x yang membuat persamaan (2) sama dengan NOL. Jadi, kita dapat mendefinisikan akar suatu persamaan adalah nilai x yang membuat f(x) = 0. Berdasarkan alasan ini, kadangkala akar disebut juga titik nol persamaan. Walaupun rumus kuadrat tersebut cukup ampuh untuk menyelesaikan persamaan (2), tetapi terdapat banyak fungsi lain yang akarnya tidak dapat ditentukan secara demikan mudah. Untuk kasus-kasus begitu, metode numerik  sarana yang efisien untuk mencari jawabannya.

Metode-metode pengurung Suatu fungsi secara khas berganti tanda di sekitar suatu akar Metode pengurung memanfaatkan fakta ini dalam mencari nilai akar persamaan Diperlukan dua terkaan awal Terkaan ini harus dapat mengurung atau berada pada kedua sisi dari akar contoh Gunakan pendekatan grafis untuk menentukan koefisien hambatan c yang diperlukan oleh penerjun payung dengan massa m = 68,1 kg agar mempunyai kecepatan 40 m/detik setelah jatuh bebas untuk waktu t = 10 detik. Percepatan grafitasi adalah 9,8 m/detik2

contoh