1 Pertemuan 03 dan 04 Ukuran Variasi Matakuliah: I0284 - Statistika Tahun: 2008 Versi: Revisi.

Slides:



Advertisements
Presentasi serupa
BAB-4 UKURAN DESKRIPTIF VARIABEL NUMERIK By M. YAHYA AHMAD
Advertisements

Modul-8 : Algoritma dan Struktur Data
5. Ukuran Sebaran (keragaman)
© 2002 Prentice-Hall, Inc.Chap 3-1 Bab 3 Pengukuran.
Varable Control Chart Individual, Cumulative Sum, Moving-Average, Geometric Moving-Average, Trend, Modified, Acceptance.
(MEASURES OF DISPERSION)
Pertemuan 02 Ukuran Numerik Deskriptif
Pengertian dan Peranan Statistika dan Data Statistik Pertemuan 01
Metode Statistika (STK211)
1 Pertemuan 02 Ukuran Pemusatan dan Lokasi Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Ruang Contoh dan Peluang Pertemuan 05
Pendugaan Parameter Proporsi dan Varians (Ragam) Pertemuan 14 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
UKURAN PENYEBARAN DATA
Appropriate Measures of Central Tendency Nominal variables Mode Ordinal variables Median Interval level variables Mean - If the distribution is normal.
1 Pertemuan 10 Fungsi Kepekatan Khusus Matakuliah: I0134 – Metode Statistika Tahun: 2007.
Pertemuan 03 Ukuran Penyimpangan (Variasi)
PENDUGAAN PARAMETER Pertemuan 7
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
Sebaran Peluang Kontinu (I) Pertemuan 7 Matakuliah: I0014 / Biostatistika Tahun: 2008.
1 Pertemuan #2 Probability and Statistics Matakuliah: H0332/Simulasi dan Permodelan Tahun: 2005 Versi: 1/1.
1 Pertemuan 11 The Manipulative part of the object data model (Lanjutan bagian 2) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Pertemuan #3 Probability Distribution Matakuliah: H0332/Simulasi dan Permodelan Tahun: 2005 Versi: 1/1.
1 Pertemuan 24 Deret Berkala, Peramalan, dan Angka Indeks-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Minggu 10, Pertemuan 20 Normalization (cont.) Matakuliah: T0206-Sistem Basisdata Tahun: 2005 Versi: 1.0/0.0.
Sebaran Peluang Kontinu (II) Pertemuan 8 Matakuliah: I0014 / Biostatistika Tahun: 2008.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Ukuran Pemusatan dan Lokasi Pertemuan 03 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Kuswanto Ukuran keragaman Dari tiga ukuran pemusatan, belum dapat memberikan deskripsi yang lengkap bagi suatu data. Dari tiga ukuran pemusatan,
Smoothing. Basic Smoothing Models Moving average, weighted moving average, exponential smoothing Single and Double Smoothing First order exponential smoothing.
Ukuran Penyimpangan atau Disversi Pertemuan 04
PROBABILITY DISTRIBUTION
STATISTIKA CHATPER 4 (Perhitungan Dispersi (Sebaran))
Portofolio Capm.
Metode Statistika (STK211)
Cartesian coordinates in two dimensions
Cartesian coordinates in two dimensions
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Pengujian Hipotesis (I) Pertemuan 11
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Pertemuan 10 Distribusi Sampling
Pendugaan Parameter (I) Pertemuan 9
Ukuran Penyimpangan - Variasi -
PENDUGAAN PARAMETER Pertemuan 8
Pertemuan 24 Teknik Searching
the formula for the standard deviation:
Pertemuan 8 Sari Numerik (IV) : Ukuran Penyebaran II
DISTRIBUSI PROBABILITA
Pilih Menu :. Pilih Menu : Standar Kompetensi Menggunakan aturan statistika dalam menyajikan dan meringkas data dengan berbagai cara: memberi tafsiran,
Pendugaan Parameter (II) Pertemuan 10
Ukuran Variasi atau Dispersi
STATISTIK 1 Pertemuan 5,6: Ukuran Pemusatan dan Penyebaran
Ukuran Variasi atau Dispersi
STATISTIK 1 Pertemuan 5,6: Ukuran Pemusatan dan Penyebaran
Ukuran Variasi atau Dispersi
Pertemuan Kesembilan Analisa Data
STATISTIKA Pertemuan 3: Ukuran Pemusatan dan Penyebaran
VARIABEL ACAK (RANDOM VARIABLES)
STATISTIKA Pertemuan 3: Ukuran Pemusatan dan Penyebaran
Pertemuan 09 Pengujian Hipotesis 2
CENTRAL TENDENCY Hartanto, SIP, MA Ilmu Hubungan Internasional
Fungsi Kepekatan Peluang Khusus Pertemuan 10
Pertemuan 05 Ukuran Deskriptif Lain
Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana
Ukuran Akurasi Model Deret Waktu Manajemen Informasi Kesehatan
Mendeskripsikan Data Fadjar Pambudhi.
Kuliah ke 3 Elementary Statistics Eleventh Edition
JENIS DATA PENELITIAN Data kualitatif (qualitative data)
Statistic Process Control Week 3 Ananda Sabil Hussein, SE, MCom.
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
Transcript presentasi:

1 Pertemuan 03 dan 04 Ukuran Variasi Matakuliah: I Statistika Tahun: 2008 Versi: Revisi

2 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa akan dapat menghitung ukuran-ukuran variabilitas.

3 Outline Materi Range Inter Quartil Range Ringkasan Lima Angka Diagram Kotak Garis Data outlier (pencilan) Ukuran Posisi Relative Varians dan Simpangan Baku Koefisien Variasi

4 Measures of Variability spreadA measure along the horizontal axis of the data distribution that describes the spread of the distribution from the center.

5 The Range range, R,The range, R, of a set of n measurements is the difference between the largest and smallest measurements. Example:Example: A botanist records the number of petals on 5 flowers: 5, 12, 6, 8, 14 The range is R = 14 – 5 = 9. Quick and easy, but only uses 2 of the 5 measurements.

6 The Variance varianceThe variance is measure of variability that uses all the measurements. It measures the average deviation of the measurements about their mean. Flower petals:Flower petals:5, 12, 6, 8,

7 variance of a populationThe variance of a population of N measurements is the average of the squared deviations of the measurements about their mean  The Variance variance of a sampleThe variance of a sample of n measurements is the sum of the squared deviations of the measurements about their mean, divided by (n – 1) 

8 In calculating the variance, we squared all of the deviations, and in doing so changed the scale of the measurements. (inch-> square inch) standard deviationTo return this measure of variability to the original units of measure, we calculate the standard deviation, the positive square root of the variance. The Standard Deviation

Varians Untuk mengetahui jarak setiap data terhadap rata-rata. Semakin kecil jarak, maka semakin homogen data tersebut. Jika data sama, maka simpangan baku = 0. Pangkat dua dari simpangan baku dinamakan varians. a. Untuk data tak berkelompok 9

b. Untuk data berkelompok : 10

11 Two Ways to Calculate the Sample Variance Sum45060 Use the Definition Formula:

12 Two Ways to Calculate the Sample Variance Sum45465 Use the Calculational Formula:

13 ALWAYSThe value of s is ALWAYS positive. The larger the value of s 2 or s, the larger the variability of the data set. Why divide by n – 1?Why divide by n – 1? s   –The sample standard deviation s is often used to estimate the population standard deviation  Dividing by n – 1 gives us a better estimate of  Some Notes Applet

Koefisien Variasi ( KV ) Untuk melihat keseragaman data. Suatu kelompok dikatakan lebih seragam dibandingkan dengan kelompok lainnya apabila mempunyai KV yang lebih kecil. 14

15 Measures of Relative Standing p th percentile.How many measurements lie below the measurement of interest? This is measured by the p th percentile. p-th percentile (100-p) % x p %

16 Examples 90% of all men (16 and older) earn more than $319 per week. BUREAU OF LABOR STATISTICS 2002 $319 90%10% 50 th Percentile 25 th Percentile 75 th Percentile  Median  Lower Quartile (Q 1)  Upper Quartile (Q 3 ) $319 is the 10 th percentile.

17 lower quartile (Q 1 )The lower quartile (Q 1 ) is the value of x which is larger than 25% and less than 75% of the ordered measurements. upper quartile (Q 3 )The upper quartile (Q 3 ) is the value of x which is larger than 75% and less than 25% of the ordered measurements. interquartile range,The range of the “middle 50%” of the measurements is the interquartile range, IQR = Q 3 – Q 1 Quartiles and the IQR

18 Using Measures of Center and Spread: The Box Plot The Five-Number Summary: Min Q 1 Median Q 3 Max The Five-Number Summary: Min Q 1 Median Q 3 Max Divides the data into 4 sets containing an equal number of measurements. A quick summary of the data distribution. box plotshape outliersUse to form a box plot to describe the shape of the distribution and to detect outliers.

19 Constructing a Box Plot Q1Q1Q1Q1m Q3Q3Q3Q3 Isolate outliers by calculating Lower fence: Q IQR Upper fence: Q IQR Measurements beyond the upper or lower fence is are outliers and are marked (*). *

20 Interpreting Box Plots Median line in center of box and whiskers of equal length—symmetric distribution Median line left of center and long right whisker—skewed right Median line right of center and long left whisker—skewed left

21 Key Concepts IV. Measures of Relative Standing 1. Sample z-score: 2. pth percentile; p% of the measurements are smaller, and (100  p)% are larger. 3. Lower quartile, Q 1 ; position of Q 1 .25(n  1) 4. Upper quartile, Q 3 ; position of Q 3 .75(n  1) 5. Interquartile range: IQR  Q 3  Q 1 V. Box Plots 1. Box plots are used for detecting outliers and shapes of distributions. 2. Q 1 and Q 3 form the ends of the box. The median line is in the interior of the box.

22 Key Concepts 3. Upper and lower fences are used to find outliers. a. Lower fence: Q 1  1.5(IQR) b. Outer fences: Q 3  1.5(IQR) 4. Whiskers are connected to the smallest and largest measurements that are not outliers. 5. Skewed distributions usually have a long whisker in the direction of the skewness, and the median line is drawn away from the direction of the skewness.

23 Selamat Belajar Semoga Sukses.