Fuzzy for Image Processing

Slides:



Advertisements
Presentasi serupa
Konversi citra Satriyo.
Advertisements

Outline Materi Hubungan antara Comp. Vision, Grafika Komputer, Pengolahan Citra, dan Pengenalan Pola (Pattern Recognition) Domain Computer Vision Processing.
Artificial Intelegent
CS3204 Pengolahan Citra - UAS
Function.
Perbaikan Citra pada Domain Spasial
PERBAIKAN KUALITAS CITRA 1
Fuzzy Logic Control.
RANGKAIAN LOGIKA KOMBINASIONAL
Kamis, 7 Oktober 2010 MPS 2.  A special case of existing statistics: it is reanalysis of previously collected survey or other data that were originally.
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
1 DATA STRUCTURE “ STACK” SHINTA P STMIK MDP APRIL 2011.
ARTIFICIAL INTELLIGENCE 6 Fuzzy Logic
Clustering. Definition Clustering is “the process of organizing objects into groups whose members are similar in some way”. A cluster is therefore a collection.
BLACK BOX TESTING.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
1 Pertemuan 24 APLIKASI LOGIKA FUZZY Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
Testing Implementasi Sistem Oleh :Rifiana Arief, SKom, MMSI
The steps to work with Power Point click Start> All Programs> Microsoft Office> Microsoft Office PowerPoint2007 klik Start>All Programs>Microsoft.
1 Pertemuan 09 Kebutuhan Sistem Matakuliah: T0234 / Sistem Informasi Geografis Tahun: 2005 Versi: 01/revisi 1.
The development of the software in this context is parallel processing or known as parallelization. In this parallel processing this software used.
Pertemuan 22 FUZZIFIKASI DAN DEFUZZIFIKASI
1 Pertemuan 22 Analisis Studi Kasus 2 Matakuliah: H0204/ Rekayasa Sistem Komputer Tahun: 2005 Versi: v0 / Revisi 1.
1 Pertemuan 26 NEURO FUZZY SYSTEM Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
IMAGE ENHANCEMENT (PERBAIKAN CITRA)
CS3204 Pengolahan Citra - UAS
ANIFUDDIN AZIS Himpunan Fuzzy dan Operasi Dasar. Dari Himpunan Klasik ke Himpunan Fuzzy Misal U adalah semesta pembicaraan yang berisi semua kemungkinan.
LOGIKA FUZZY.
EIS (Executive Information Systems)
MODUL 3 PERBAIKAN KUALITAS CITRA
Politeknik Elektronika Negeri Surabaya
Dasar Pengolahan Video Digital
Modul 1 PENGANTAR PENGOLAHAN CITRA
Image Segmentation.
Logika Fuzzy dan aplikasinya
LOGIKA FUZZY ABDULAH PERDAMAIAN
FUZZY INFERENCE SYSTEMS
Himpunan Fuzzy dan Operasi Dasar
Fungsi Analisis pada SIG
LIMIT FUNGSI LIMIT FUNGSI ALJABAR.
Digital Image Fundamentals
Model Fuzzy Mamdani.
Pertemuan 11 FUZZY INFERENCE SYSTEM (FIS)
The contents This lectures we will look at image enhancement techniques working in the spatial domain: What is image enhancement? Different kinds of image.
Himpunan Fuzzy dan Operasi Dasar
CARA KERJA SISTEM PAKAR
Teori Dasar Sistem.
Image Enhancement –Spatial Filtering
FUZZY INFERENCE SYSTEM (FIS)
Desita Ria Yusian TB,S.ST.,MT Universitas Ubudiyah Indonesia
FUZZY INFERENCE SYSTEM (FIS)
FUZZY INFERENCE SYSTEM (FIS) - TSUKAMOTO
Sumber : Cris Salomon, “Fundamental of Digital Image Processing”
<KECERDASAN BUATAN>
Fuzzy logic Fuzzy Logic Disusun oleh: Tri Nurwati.
Pengantar Pengolahan Citra
EIS (Executive Information Systems)
DASAR FUZZY.
Penggunaan Toolbox Matlab menyelesaikan kasus sistem uzzy
Perhitungan Membership
Pertemuan 11 FUZZY INFERENCE SYSTEM (FIS)
FUZZY INFERENCE SYSTEM (FIS) - TSUKAMOTO
Master data Management
FUZZY INFERENCE SYSTEM (FIS) - TSUKAMOTO
PENGENALAN CITRA DIGITAL
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
Kelompok 13 Nama Anggota : Sigit Dwi Prianto Praditya F Marliyana.
DASAR FUZZY.
PENGANTAR PENGOLAHAN CITRA
Fuzzy Systems Prof. Dr. Widodo Budiharto 2018
Transcript presentasi:

Fuzzy for Image Processing fuzzy logic Fuzzy for Image Processing Penyusun: Tri Nurwati (Dari berbagai sumber)

Fuzzy Image Processing fuzzy logic Fuzzy Image Processing Fuzzy image processing is the collection of all approaches that understand, represent and process the images, their segments and features as fuzzy sets. The representation and processing depend on the selected fuzzy technique and on the problem to be solved. (From: Tizhoosh, Fuzzy Image Processing, Springer, 1997)

Struktur pengolahan citra dengan fuzzy fuzzy logic Struktur pengolahan citra dengan fuzzy

Proses pembuatan fuzzy pada pengolahan citra fuzzy logic Proses pembuatan fuzzy pada pengolahan citra Tidak seperti penggunakan logika fuzzy di suatu plant, untuk pengolahan citra pembuatan fuzzy melalui proses: coding of image data (fuzzification) the middle step (modification of membership values decoding of the results (defuzzification)

Proses pembuatan fuzzy pada pengolahan citra fuzzy logic Proses pembuatan fuzzy pada pengolahan citra Setelah data citra ditransformasikan dari level gray ke dalam membership function (fuzzification), dalam proses ini dibutuhkan ketelitian dalam pengelompokan dan penentuan nilai membership input dan output

fuzzy logic

Kelebihan pengolahan citra dengan menggunakan logika fuzzy fuzzy logic Kelebihan pengolahan citra dengan menggunakan logika fuzzy Teknik logika fuzzy sangat mumpuni dalam pemrosesan/pengolahan dan representatif pengetahuan (rule) Teknik logika Fuzzy dapat mengatur keambiguan (mirip) dan hal-hal yang relatif

Kelebihan pengolahan citra dengan menggunakan logika fuzzy fuzzy logic Kelebihan pengolahan citra dengan menggunakan logika fuzzy Teori set fuzzy mempunyai kelebihan dapat mempresentasikan dan memproses pengetahuan pengguna dalam bentuk aturan “it-then”

fuzzy logic

Contoh: colour = {yellow, orange, red, violet, blue} fuzzy logic Contoh: colour = {yellow, orange, red, violet, blue}

Contoh: warna gray: gelap, gray, dan terang fuzzy logic Contoh: warna gray: gelap, gray, dan terang

fuzzy logic Aplikasi : Histogram-based gray-level fuzzification (or briefly histogram fuzzification) contoh: Perbaikan ketajaman warna image (seperti gambar panda di atas) Local fuzzification (contoh: deteksi tepi) Feature fuzzification (Scene analysis, object recognition)

Perbaikan Image dengan Fuzzy fuzzy logic Perbaikan Image dengan Fuzzy many researchers have applied the fuzzy set theory to develop new techniques for contrast improvement

Langkah-langkah fuzzy logic 1.1. Contrast Improvement with INT- Operator Langkah: a.menentukan fungsi membership b.Mengubah nilai membership c.Membuat skala warna gray

fuzzy logic 1.2. Contrast Improvement using Fuzzy Expected Value (Craig and Schneider 1992) 1. Step: Calculate the image histogram 2. Step: Determine the fuzzy expected value (FEV) 3. Step: Calculate the distance of gray-levels from FEV 4. Step: Generate new gray-levels

fuzzy logic 1.3. Contrast Improvement with Fuzzy Histogram Hyperbolization (Tizhoosh 1995/1997) 1. Step: Setting the shape of membership function (regrading to the actual image) 2. Step: Setting the value of fuzzifier Beta (a linguistic hedge) 3. Step: Calculation of membership values 4. Step: Modification of the membership values by linguistic hedge 5. Step: Generation of new gray-levels

1.4. Contrast Improvement based on Fuzzy If-Then Ruels (Tizhoosh 1997) fuzzy logic 1.4. Contrast Improvement based on Fuzzy If-Then Ruels (Tizhoosh 1997) Step: Setting the parameter of inference system (input features, membership functions,..) Step: Fuzzification of the actual pixel (memberships to the dark, gray and bright sets of pixels) .

1.4. Contrast Improvement based on Fuzzy If-Then Ruels (Tizhoosh 1997) fuzzy logic 1.4. Contrast Improvement based on Fuzzy If-Then Ruels (Tizhoosh 1997) 3. Step: Inference (e.g. if dark then darker, if gray then gray, if bright then brighter) 4. Step: Defuzzification of the inference result by the use of three singletons

1.5. Locally Adaptive Contrast Enhancement (Tizhoosh et al. 1997) fuzzy logic 1.5. Locally Adaptive Contrast Enhancement (Tizhoosh et al. 1997) In many cases, the global fuzzy techniques fail to deliver satisfactory results. Therefore, a locally adaptive implementation is necessary to achieve better results. See some examples and a comparison with calssical approach.

fuzzy logic

fuzzy logic

fuzzy logic

fuzzy logic

fuzzy logic Deteksi Tepi Perbaiki dengan rumus di bawah

fuzzy logic Deteksi Tepi

Contoh Hasil Deteksi Tepi fuzzy logic Contoh Hasil Deteksi Tepi

Segmentasi Image dengan Fuzzy fuzzy logic Segmentasi Image dengan Fuzzy

Segmentasi Image dengan Fuzzy fuzzy logic Segmentasi Image dengan Fuzzy

fuzzy logic

fuzzy logic Contoh segmentasi