BAB XI ANGKA INDEKS Oleh : Andri Wijaya, S.Pd., S.Psi., M.T.I.

Slides:



Advertisements
Presentasi serupa
ANGKA INDEKS.
Advertisements

Angka indeks Angka indeks adalah suatu ukuran statistik yang menunjukkan perubahan-perubahan atau perkembangan-perkembangan keadaan/kegiatan/peristiwa.
ANALISIS DAMPAK TABEL INPUT OUTPUT (Khusus Penghitungan Inflasi)
MODUL 13 ANGKA INDEKS Indikator ekonomi menarik minat masyarakat karena merupakan indikator keberhasilan pemerintah dalam meningkatkan kesejahteraan. Indikator.
ANGKA INDEKS Ia Kurnia.
BAB XI ANGKA INDEKS Oleh : Andri Wijaya, S.Pd., S.Psi., M.T.I.
Oleh : Andri Wijaya, S.Pd., S.Psi., M.T.I.
BAB VIII REGRESI LINEAR BERGANDA DAN REGRESI (TREND) NON LINEAR
ANGKA INDEKS Bab XI.
ANGKA INDEKS.
BAB V UKURAN PEMUSATAN (Rata-rata Ukur dan Harmonis) (Pertemuan ke-6)
Oleh : Andri Wijaya, S.Pd., S.Psi., M.T.I.
Oleh : Andri Wijaya, S.Pd., S.Psi., M.T.I.
BAB 5 ANGKA INDEKS.
BAB XI ANGKA INDEKS Oleh : Andri Wijaya, S.Pd., S.Psi., M.T.I.
ANGKA INDEKS.
P ertemuan 11 Angka Indeks J0682.
Modul VIII Angka Index.
Pendeflasian Data Berkala
BAB VIII REGRESI LINEAR BERGANDA DAN REGRESI (TREND) NON LINEAR
BAB 7 ANGKA INDEKS.
ANGKA INDEKS.
CHAPTER 4 IndekS.
ANGKA INDEKS.
Indeks Relatif Harga Beras Bali
Latihan soal angka indeks
Nama : Yanurman Giawa Nim : No.Absen : 05
INFLASI DAN DEFLASI Padlah Riyadi., SE., Ak., CA..
Ulmi wahyu Sigit pratama putra
BAB VIII REGRESI LINEAR BERGANDA DAN REGRESI (TREND) NON LINEAR
Oleh : Andri Wijaya, S.Pd., S.Psi., M.T.I.
BAB VII ANALISIS KORELASI DAN REGRESI LINIER SEDERHANA
Akhid Yulianto, SE, Msc (Log) (Disarikan dari buku Yusuf Wibisono)
ANGKA INDEKS.
Resista Vikaliana, S.Si. MM
Harga Indeks ANGKA INDEKS (Konsep Angka Indeks, Indeks Relatif
STATISTIK INDUSTRI MODUL 11
Inflasi dan Indeks Harga
ANGKA INDEKS.
BAB V ANGKA INDEKS.
BAB X INDEKS MUSIMAN DAN GERAKAN SIKLIS
BAB IX ANALISIS DATA BERKALA (Menentukan Trend) (Pertemuan ke-17)
Oleh: Lilik Prenali, SPd
BAB VIII REGRESI LINEAR BERGANDA DAN REGRESI (TREND) NON LINEAR
Indeks Relatif Harga Rani Wahyuningsih B.04.
Indeks Relatif Harga Beras Bali
Indeks Relatif Harga Beras Bali
ANGKA INDEKS Bab XI.
Statistika Deskriptif
Nama : Dian Ningrum Kelas :11.2A.05 Nim : INDEKS RELATIF HARGA.
Anggie Saputri A.05 Statistika Deskriptif Indeks Relatif
Indeks Relatif Harga Beras Bali
ANGKA INDEKS Oleh : AHMAD NURDIN HASIBUAN
Inflasi dan Indeks Harga
Statistika Deskriptif
Febrilia Suci Agesti Fsuciagesti.wordpress.com.
STATISTIKA DESKRIPTIF Plus Drs. Algifari, M. Si.
Nama : Dwi Riska Kelas : 11.2A.05 NIM :
STATISTIKA DESKRIPTIF
Indeks Relatif Harga Beras Bali
Analisis Angka Indeks 05 Angka indeks menggambarkan perubahan relatif terhadap harga, kuantitas atau nilai, dibandingkan dengan tahun dasar Dra. Yuni Astuti,
ANGKA INDEKS Jaka Wijaya Kusuma M.Pd.
BAB 5 ANGKA INDEKS.
BAB 5 ANGKA INDEKS.
BAB 5 ANGKA INDEKS.
INDEKS RELATIF HARGA Kelompok 10
Muetia winda astuti A.05 Indeks Relatif.
ANGKA INDEKS.
BAB 5 ANGKA INDEKS.
ANGKA INDEKS. 2 Adalah suatu bilangan yang menunjukkan besar kecilnya perubahan suatu keadaan terhadap keadaan lain yang dijadikan sebagai dasar.
Transcript presentasi:

BAB XI ANGKA INDEKS Oleh : Andri Wijaya, S.Pd., S.Psi., M.T.I. (Penentuan dan Penggeseran Waktu Indkes serta Pengujian Angka Indeks dan Pendeflasian Data Berkala) (Pertemuan ke-24) Oleh : Andri Wijaya, S.Pd., S.Psi., M.T.I. Program Studi Sistem Informasi Sekolah Tinggi Manajemen Informatika dan Komputer Global Informatika Multi Data Palembang

ANGKA INDEKS

PENENTUAN WAKTU DASAR Syarat dalam menentukan atau memilih waktu dasar adalah Waktu seyogyanya menunjukkan keadaan perekonomian yang stabil Waktu tidak terlalu jauh ke belakang Waktu terjadinya peristiwa penting Waktu tersedianya data untuk keperluan timbangan

PENGGESERAN WAKTU DASAR Syarat untuk melakukan pergeseran waktu dasar adalah Stabilitas ekonomi Tidak terlalu jauh kebelakang Saat terjadi peristiwa penting Ketersediaan data Survei baru untuk menentukan komposisi barang

PENGGESERAN WAKTU DASAR Dua cara untuk melakukan perggeseran adalah Apabila data asli masih tersedia, maka angka pada waktu atau tahun tertentu yang akan dipakai sebagai tahun dasar yang baru tersebut diberi nilai 100%, sedangkan angka- angka lainnya dibagi dengan angka dari waktu tersebut, kemudian dikalikan dengan 100%.

PENGGESERAN WAKTU DASAR Data harga perdagangan besar kentang tahun 1987-1995 disajikan dalam tabel berikut. Tentukan indeks harga dengan tahun dasar 1987 dan indeks baru dengan tahun dasar 1990. Tahun Harga 1987 9366 1988 11578 1989 22284 1990 8339 1991 27874 1992 27237 1993 35805 1994 30142 1995 39402

PENGGESERAN WAKTU DASAR Indeks lama, tahun dasar 1987 Indek baru, tahun dasar 1990

PENGGESERAN WAKTU DASAR Tabel Indeks Lama 1987 dan Indeks Baru 1990 Tahun Harga Indeks Lama Indeks Baru 1987 9366 100,00 112,32 1988 11578 123,62 138,84 1989 22284 237.92 267,23 1990 8339 89,03 1991 27874 297.32 333,94 1992 27237 290,32 326,62 1993 35805 382,29 429,37 1994 30142 321,82 361,46 1995 39402 420,69 472,53

PENGGESERAN WAKTU DASAR Dua cara untuk melakukan perggeseran adalah Apabila data asli tidak tersedia, maka angka pada waktu atau tahun tertentu yang akan dipakai sebagai tahun dasar yang baru tersebut diberi nilai 100%, kemudian angka indkes pada tahun-tahun lainnya dibagi dengan indeks dari tahun dasr baru, dan mengalikannya dengan 100%

PENGGESERAN WAKTU DASAR Indeks yang sudah ada dengan 1987 = 100, kemudian akan digeser menjadi 1990 = 100 Indeks lama, tahun dasar 1987 Indeks hasil pergeseran, tahun dasar 1990

PENGGESERAN WAKTU DASAR Tabel Indeks Lama 1987 dan Indeks Bergeser 1990 Tahun Indeks Lama Indeks Baru 1987 100,00 112,32 1988 123,62 138,85 1989 237.92 267,24 1990 89,03 1991 297.32 333,95 1992 290,32 326,64 1993 382,29 429,37 1994 321,82 361,47 1995 420,69 472,53

PENENTUAN DAN PENGGESERAN WAKTU DASAR Perbandingan Indeks Baru dan Bergeser Kesimpulan : Hasil perhitungan yang didasarkan pada data asli tersedia dengan data asli tidak tersedia sama. Indeks Baru Indeks Bergeser 112,32 138,84 138,85 267,23 267,24 100,00 333,94 333,95 326,62 326,64 429,37 361,46 361,47 472,53

PENGUJIAN ANGKA INDEKS Kebaikan atau kesempurnaan angka indeks biasanya dilihat dari kenyataan apakah indeks yang bersangkutan memenuhi beberapa kriterua pengujian Jenis pengujian angka indeks adalah Time Reversal Test Factor Reversal Test

PENGUJIAN ANGKA INDEKS Time Reversal Test It, 0 × I0, t = 1 (indeks belum dinyatakan dalam %) It, 0 = indeks waktu t dengan waktu dasar 0 I0, t = indeks waktu 0 dengan waktu dasar t

PENGUJIAN ANGKA INDEKS Time Reversal Test Kesimpulan : Indeks harga relatif memenuhi time reversal test Indeks agregatif tidak tertimbang memenuhi time reversal test Indeks Laspeyres tidak memenuhi time reversal test Indeks ideal (Indeks Irving Fisher) memenuhi time reversal test

PENGUJIAN ANGKA INDEKS Factor Reversal Test v = p × q v = nilai p = harga per satuan q = banyaknya barang dalam satuan

PENGUJIAN ANGKA INDEKS Factor Reversal Test Kesimpulan : Indeks harga dan indeks kuantitas memenuhi factor reversal test Indeks harga agregatif dan indeks kuantitas agregatif memenuhi factor reversal test Indeks ideal (Indeks Irving Fisher) memenuhi factor reversal test

PENGUJIAN ANGKA INDEKS Misalkan mempunyai suatu deretan angka indeks (indeks dari beberapa tahun, katakanlah t tahun) dengan waktu dasar I, yaitu dengan simbol sebagai berikut. I1, i, I2, i, …, It, i Selanjutnya mempunyai indkes dari tahun- tahun yang sama tetapi dengan waktu dasar j, sebagai berikut. I1, j, I2, j, …, It, j

PENGUJIAN ANGKA INDEKS Apabila diperoleh urutan indeks yang kedua, yaitu (b) dengan jalan membagi setiap indeks dalam urutan pertama, yaitu (a) dengan Ij, i, maka indeks dikatakan memenuhi pengujian sirkuler. Rumus (Sebelum indeks dinyatakan dalam %)

PENGUJIAN ANGKA INDEKS Contoh Tahun Indeks Lama Indeks Baru 1987 100,00 112,32 1988 123,62 138,85 1989 237.92 267,24 1990 89,03 1991 297.32 333,95 1992 290,32 326,64 1993 382,29 429,37 1994 321,82 361,47 1995 420,69 472,53

PENGUJIAN ANGKA INDEKS Jawaban Kesimpulan : Hasilnya sama seperti indeks lama

PENDEFLASIAN DATA BERKALA Perkembangan yang dinilai dalam mata uang kemungkinan besar menunjukkan kenaikan, kenyataan tidak. Hal ini karena adanya pengaruh kenaikan harga (inflasi) Kenaikan indeks harga menurunkan daya beli, sebaliknya penurunan angka indeks harga menaikkan daya beli.

PENDEFLASIAN DATA BERKALA Untuk mendapatkan data berkala yang nyata (upah nyata), angka-angka tersebut harus dibagi dengan indeks harga konsumen atau indeks biaya hidup. Indeks harga naik a kali, daya beli turun seper a kali.

PENDEFLASIAN DATA BERKALA

PENDEFLASIAN DATA BERKALA Contoh Tentukan upah nyata dari data berikut. Tahun 1995 1996 1997 1998 1999 Upah Rata (Rp/Hari) 1500 2000 2500 2700 3000 Indeks Harga Konsumen (1995 = 100%) 95,5 101,8 114,4 116,2 123,5

PENDEFLASIAN DATA BERKALA Jawaban Tahun dasar 1995 = 100 Indeks Harga Konsumen Baru Tahun 1995 1996 1997 1998 1999 Indeks Harga Konsumen (1995 = 100) 95,5 101,8 114,4 116,2 123,5 (Baru) 100 106,6 119,8 121,7 129,3

PENDEFLASIAN DATA BERKALA Jawaban Upah Nyata Upah rata-rata 3000 dengan IHK 129,3%, terjadi penurunan menjadi 2320 Tahun 1995 1996 1997 1998 1999 Upah Rata 1500 2000 2500 2700 3000 Indeks Harga Konsumen (Baru) 100 106,6 119,8 121,7 129,3 Upah Nyata 1876 2087 2219 2320

PENDEFLASIAN DATA BERKALA Jawaban Upah rata-rata naik 100% (1995-1999) Upah nyata naik 54,7% (1995-1999) Jadi periode 1995-1999 upah yang diterima naik 100%, tetapi sebenarnya upah nyata hanya naik 54,7%

PENDEFLASIAN DATA BERKALA Jawaban Daya Beli Misalkan, daya beli rupiah (Rp1,00) untuk tahun 1995 Tahun 1995 1996 1997 1998 1999 Indeks Harga Konsumen (Baru) 100 106,6 119,8 121,7 129,3 Daya Beli 1,0 0,94 0,83 0,82 0,77 ~ Turun 6% Turun 17% Turun 18% Turun 23%

PENDEFLASIAN DATA BERKALA Jawaban Daya beli turun 6% (1996) Daya beli turun 17% (1997)

Soal Pendeflasian Data Berkala Tentukan upah nyata dari data berikut. Tahun 1995 1996 1997 1998 1999 Upah Rata (Rp/Hari) 2500 2700 3500 3700 4000 Indeks Harga Konsumen (1995 = 100%) 105,5 201,8 214,4 216,2 223,5