Pertemuan 15 Red-Black Tree (RBT)

Slides:



Advertisements
Presentasi serupa
Struktur Data Departemen Ilmu Komputer FMIPA-IPB 2009
Advertisements

BAB 9 TREE Tujuan Instruksional Umum:
By : Fitroh Amaluddin & Galih Wasis W.
RED BLACK TREE INSERTION
Algoritma dan Struktur Data
Algoritma dan Struktur Data
Algoritma dan Struktur Data
Binary Search Tree 2007/2008 – Ganjil – Minggu 9.
Tenia Wahyuningrum, S.Kom. MT
STRUKTUR DATA tree manipulation
1 Pertemuan Tree Matakuliah: T0026/Struktur Data Tahun: 2005 Versi: 1/1.
Algoritma dan Struktur Data
Tree. Tree (Pohon) Dalam dunia nyata, sebuah pohon memiliki : akar, cabang, daun. Dalam dunia komputer, pohon (tree) memiliki 3 (tiga) bagian tersebut.
Matakuliah : T0026/Struktur Data Tahun : 2005 Versi : 1/1
Red-Black Trees.
Pertemuan 10 Binary Search Tree
Matakuliah : T0534/Struktur Data Tahun : 2005 Versi : September 2005
Pertemuan 8 Stack dengan Array
Organisasi Berkas Sekuensial Berindeks
1 Pertemuan 17 Heaps Matakuliah: T0026/Struktur Data Tahun: 2005 Versi: 1/1.
Pertemuan 5 Balok Keran dan Balok Konsol
1 Pertemuan 5 PPh PASAL 21 Matakuliah: A0572/ Perpajakan Tahun: 2005 Versi: Revisi 1.
Matakuliah : R0022/Pengantar Arsitektur Tahun : Sept 2005 Versi : 1/1
1 Pertemuan 7 Diferensial Matakuliah: R0262/Matematika Tahun: September 2005 Versi: 1/1.
1 Pertemuan 12 B-Tree Matakuliah: T0534/Struktur Data Tahun: 2005 Versi: September 2005.
1 Pertemuan 4 Doubly Linked List Matakuliah: T0026/Struktur Data Tahun: 2005 Versi: 1/1.
1 Pertemuan 19 Rendering perspektif mata burung Matakuliah: R0124 / Teknik Komunikasi Arsitektur Tahun: 2005 Versi: >/ >
Struktur Data Tree Eka Rahayu S. (2 Agustus 2011).
Menggambar Tree wijanarto.
Defri Kurniawan POHON DAN POHON BINER Defri Kurniawan
TREE STRUCTURE (Struktur Pohon)
Matakuliah : K0074/Kalkulus III Tahun : 2005 Versi : 1/0
Pertemuan 10 PAJAK PERTAMBAHAN NILAI dan PPn BM
Struktur pohon dan kunjungan pohon biner
Manipulasi Tree.
TREE KELOMPOK 7 HUSNATUL WILDA ( ) MISRIANA ( )
Tim Struktur Data Program Studi Teknik Informatika UNIKOM
Tim Struktur Data Program Studi Teknik Informatika UNIKOM
STRUKTUR DATA Tree (Struktur Pohon).
Tree (POHON).
Tim Struktur Data Program Studi Teknik Informatika UNIKOM
NAMA : SITI HAJAR NIM : UNIT : B NO.HP :0852 –
Tim Struktur Data Program Studi Teknik Informatika UNIKOM
Manipulasi Tree.
Tree.
Teknik Informatika - Universitas Muhammadiyah Malang (UMM)
Matakuliah : T0026/Struktur Data Tahun : 2005 Versi : 1/1
Regresi Dalam Lambang Matriks Pertemuan 09
Pertemuan 3 PD Dapat Dihomogenkan
TREE (POHON).
Algoritma dan Struktur Data
Pertemuan 6 Queue dengan Array
Tim Struktur Data Program Studi Teknik Informatika UNIKOM
Tree (Pohon).
POHON Pohon (Tree) merupakan graph terhubung tidak berarah dan tidak mengandung circuit. Contoh: (Bukan) (Bukan) (Bukan)
Oleh Shoffin Nahwa Utama, S.Kom
BINARY SEARCH TREE (BST)
IT234 Algoritma dan Struktur Data
Binary Search Tree (BST)
Tree.
IT234 Algoritma dan Struktur Data
AVL - Tree Defenisi : avl Tree adalah Binary Search Tree yang mempunyai ketentuan bahwa “Maksimum perbedaan height antara subtree kiri dan subtree kanan.
Pohon Biner.
Algoritma dan Struktur Data
Binary Search Tree (BST)
HEAP Bella Wulan N. | Ester Prenatalia A. Mutiara Fitri T. | Risang Nihapsari Purwaning M.S KOMSI 2018 DEFINISI HEAP ALGORITMA HEAP.
IT234 Algoritma dan Struktur Data
TREE Oleh : Neny silvia Nurhidayah Afny wilujeng Setyorini
Binary Search Tree (BST)
Review Struktur Data Nisa’ul Hafidhoh, MT.
Transcript presentasi:

Pertemuan 15 Red-Black Tree (RBT) Matakuliah : T0026/Struktur Data Tahun : 2005 Versi : 1/1 Pertemuan 15 Red-Black Tree (RBT)

Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa dapat menghasilkan program modular untuk mengimplementasikan ADT Red-Black tree

Pengertian dan kegunaan RBT Contoh Red-Black Tree Operasi pada RBT Outline Materi Pengertian dan kegunaan RBT Contoh Red-Black Tree Operasi pada RBT inserting data RBT Deleting data RBT contoh program implementasi

Memiliki karakteristik BST Node memiliki warna, red atau black Root selalu black Node eksternal selalu black Node eksternal Node eksternal boleh tidak ditulis

Anak dari node red harus black tidak ada 2 node red yg berurutan Karakteristik (2) Anak dari node red harus black tidak ada 2 node red yg berurutan Black-height yang sama pd kedua simple path dari suatu node ke leaf black-height (bh) : Jumlah node black pd suatu simple path bh(node 2) = 1 bh(node 11) = 2

Insert Node baru diberi warna RED Hasil insert harus tetap memenuhi karakteristik tree RB Pemeriksaan node setelah insert dilakukan berurutan dari node baru ke node-node lain (ancestor) ke arah Root

Insert : Kasus 1 atau Jika parent node baru BLACK, tree masih memenuhi persyaratan tree R-B

Insert : Kasus 2 Node baru (X atau Z) dan parent berurutan berwarna RED Supaya memenuhi persayaratan tree R-B, dilakukan rotasi tunggal dan pergantian warna

Insert : Kasus 3 Node baru (Y) dan parent berurutan berwarna RED Supaya memenuhi persayaratan tree R-B, dilakukan rotasi ganda dan pergantian warna

Insert : Kasus 4 Node baru dan parent, berurutan RED Perubahan RED-BLACK pada parent dan uncle Perubahan BLACK-RED pada grandparent

Contoh Insert : Insert A, L, G, O , R, I, T, H, M A menjadi Root, harus BLACK, perubahan warna Tree dirotasi ganda, kemudian diikuti perubahan warna Root A L

Lanjutan A L G O A L G O R I A L G O R I A L G O R A L G O R I T Tree dirotasi tunggal (kasus 2) A L G O R A L G O R I T

Lanjutan A L G O R I T H G A I O R L T H M Rotasi tunggal Perubahan warna Rotasi ganda

Delete Delete pada tree R-B menyerupai BST Pada BST : Pada tree R-B : Jika node 56 dihapus, isi child (3) di-copy ke posisi 56 yg dihapus, dan node child dihapus Pada tree R-B : Hapus node BLACK akan menyebabkan keseimbangan black-height terganggu Token double-black ‘menggantikan’ posisi BLACK yg dihapus Proses thd token, mengikuti kasus A, B atau C 3 56 3 3

Delete (lanjutan) Token double-black pada node RED: mengubah warna node menjadi BLACK, dan token akan dihapus Token double-black pada Root (BLACK): dapat dihapus, tidak ada pengaruh Delete leaf RED, langsung dihapus karena tidak mempengaruhi keseimbangan black-height

Delete : Kasus A Sibling dari node double-black : BLACK Satu nephew dari node double-black : RED Rotasi tunggal atau ganda dan token dihapus

Delete : Kasus B Sibling dari node double-black : BLACK Dua nephew dari node double-black : BLACK Token dipindahkan ke atas dengan perubahan warna tanpa rotasi

Delete : Kasus C Sibling dari node double-black : RED Terjadi rotasi tunggal dan perubahan warna

Contoh Delete G L I O R T H A M G L I O R T H M I G L I O R T H M G O Delete A : delete leaf BLACK, black-height terganggu kasus B I G L I O R T H M G O Kasus B H L R M T token double BLACK pada posisi eks node BLACK Token di Root dapat dihapus

Contoh Delete (lanjutan 1) Token mengubah RED jadi BLACK G L I O R T H M G M I O R T H G M I O R T H Delete L: node mempunyai child leaf RED yang akan menggantikan. Token double-black pada posisi eks node BLACK

Contoh Delete (lanjutan 2) G M I O R T H H M I O R T Token mengubah RED jadi BLACK H M I O R T Delete G: child leaf RED yang akan menggantikan, token pada bekas posisi BLACK H I M R T H M I O R T kasus A H I R T M Delete O: child leaf M yang akan menggantikan, token di bekasposisi node BLACK

Contoh Delete (lanjutan 3) I R T M H I M T H I M T kasus B Token mengubah RED jadi BLACK Delete R: node R mempunyai predecessor BLACK yang akan menggantikan. Token diletakkan pada bekas posisi M H I M T

Contoh Delete (lanjutan 4) I M T H M T Kasus A M T H Delete I: leaf H akan menggantikan I, token di bekas posisi H Hapus token di Root M T H M H Kasus B M H M H Delete T: token diletakkan di bekas posisi T

Contoh Delete (lanjutan 5) M H M Delete H: delete leaf RED, langsung delete

Latihan Jika pada saat delete O, yang menggantikan adalah node dari subtree kanan, tree R-B menjadi … Jika pada saat delete I, yang menggantikan adalah node yang berasal dari subtree kanan, tree R-B menjadi …