PENANGGALAN & JULIAN DAY

Slides:



Advertisements
Presentasi serupa
Penentuan waktu dan kondisi gerhana
Advertisements

PAJAK PENGHASILAN PASAL 25
Pertemuan Ke-3 STRUKTUR PEMILIHAN.
Sugeng RIANTO Seri: Smart learning in digital era Astronomi Dasar (Waktu)
________________ PENILAIAN PRESTASI KINERJA DAN PERHITUNGAN TUNJANGAN KINERJA PEGAWAI DI LINGKUNGAN KEMENHUB.
jumlah produk yang harus diproduksi dalam satu periode mendatang.
Kalender Hijriah/Islam
GERHANA BULAN DAN MATAHARI
MUHAMMAD HAJARUL ASWAD PERTEMUAN ANALISIS KORELASI 2.3. KORELASI PARSIAL 2.4. KORELASI BERGANDA.
Oleh: Faiz Rafdhi Ch, M.Kom STMIK Muhammadiyah Jakarta
INDEKS MUSIMAN DAN GERAKAN SIKLIS
TATA SURYA, GERAK BUMI DAN GERAK BULAN
Oleh : Andri Wijaya, S.Pd., S.Psi., M.T.I.
LEMBAGA PENJAMIN SIMPANAN (LPS)
Pengelolaan Keuangan Pribadi Tahun ESA141 Motivasi Usaha Seksi 52 Geri Wijanarko
Bunga sederhana Pertemuan 1.
Langkah – langkah pendesainan suatu Model
Pajak Penghasilan Pasal 25
Rumah Bersalin “HARAPAN BUNDA”
STATISTIK INDUSTRI MODUL 10
HISAB URFI 5 Mei 2013 khobibah, Hisab Urfi.
PERHITUNGAN PPH PASAL 21 PENERIMA UPAH
Pengertian Rotasi Rotasi adalah perputaran benda pada suatu sumbu yang tetap, misalnya perputaran gasing dan perputaran bumi pada poros/sumbunya. Untuk.
Rumah Bersalin “HARAPAN BUNDA”
BAB X INDEKS MUSIMAN DAN GERAKAN SIKLIS
DERET BERKALA DAN PERAMALAN
STATISTIK DAN PROBABILITAS pertemuan 5 & 6 Oleh : L1153 Halim Agung,S
Analisis Perilaku Biaya
Rumah Bersalin “ HARAPAN BUNDA “
DEPARTEMEN KEUANGAN RI 2007
MANAJEMEN PERSEDIAAN.
Nama : Thalia Pricilla Agista Kelas : IX - 2 No. Induk :
ASSALAMUALAIKUM.
DERET BERKALA DAN PERAMALAN
Anggaran Produksi.
BUMI BULAT.
DERET BERKALA DAN PERAMALAN
Analisis Perilaku Biaya
Manajemen Operasional (Peramalan Permintaan)
Rumah Bersalin “HARAPAN BUNDA”
SAINS BUMI dan ANTARIKSA
Indeks Musim dan Gerakan Siklis Tugas Mandiri 01 J0682
PERTEMUAN VI KASUS PERUSAHAAN JASA.
Rumah Bersalin “HARAPAN BUNDA”
Berkas Sekuensial.
PPh Pasal 25.
Rumah Bersalin “HARAPAN BUNDA”
Studi Kelayakan Bisnis (Aspek Pasar dan Pemasaran)
Pajak Penghasilan Pasal 25
Angsuran Pajak Dalam tahun Berjalan PPh Ps. 25.
BAB 6 analisis runtut waktu
Analisis Perilaku Biaya
DERET BERKALA DAN PERAMALAN
Mengenal Nama Hari, Bulan dan Tahun
MATA KULIAH: PERPAJAKAN
Rumah Bersalin “HARAPAN BUNDA”
UKURAN PEMUSATAN (Mean)
METEOR, METEOROIT, METEORIT dan HUJAN METEOR
Kelompok 2 munajah dewi raja gukguk Lela martina Oktavia rahmayati
DEPRESIASI.
DERET BERKALA DAN PERAMALAN
Ibadah dan Doa Syukur 70 tahun HKBP Yogyakarta Hari/Tanggal
PRAKTIKUM STATISTIKA INDUSTRI
Anggaran Produksi.
DERET BERKALA DAN PERAMALAN
Rekapitulasi SNI Penetapan Tahun April
Vernal Equinox Bumi kita bergerak mengelilingi matahari, sehingga menimbulkan kesan semu bahwa matahari–dari sudut pandang kita di Bumi–bergerak mengelilingi.
Pengolahan grafik dan penambahan gambar
BUNGA DAN DISKONTO.
A S T R O N O M I DALAM PENENTUAN BULAN HIJRIAH
Transcript presentasi:

PENANGGALAN & JULIAN DAY Disampaikan dalam Pelatihan Astronomi APAO Bandung, 16 Juni 2010

Kalender Julian Pada kalender Julian, satu tahun secara rata-rata didefinisikan sebagai 365,25 hari. Angka 365,25 dapat dinyatakan dalam bentuk (3 X 365 + 1 X 366)/4  dalam kalender Julian, terdapat tahun ka- bisat setiap 4 tahun Banyaknya hari dalam tahun kabisat (leap year) adalah 366 hari, sedangkan dalam tahun biasa (common year) adalah 365 hari.

Bagaimana dengan tahun negatif? Dalam kalender Julian, tahun kabisat di mana bulan Februari terdiri atas 29 hari, dirumuskan sebagai tahun yang habis dibagi 4. Contoh tahun kabisat pada kalender Julian adalah tahun 4, 100, 400. Bagaimana dengan tahun negatif? “Ada perbedaan antara sejarawan dan astronom dalam penomoran tahun.”

Bagaimana dengan tahun negatif? Bagi sejarawan, hitungan mundur tahun sebelum tahun 1 adalah tahun 1 SM, 2 SM, 3 SM dan seterusnya. Sementara menurut astronom hitungan mundur tahun sebelum tahun 1 adalah tahun 0, -1, -2 dan seterusnya. Tahun kabisat (leap year) yang habis dibagi 4 untuk tahun negatif dirumuskan secara astronomis. Jadi, yang termasuk tahun kabisat adalah tahun 8, 4, 0, -4, -8, -12 dan seterusnya.

Bagaimana dengan tahun negatif? Bagi sejarawan, hitungan mundur tahun sebelum tahun 1 adalah tahun 1 SM, 2 SM, 3 SM dan seterusnya. Sementara menurut astronom hitungan mundur tahun sebelum tahun 1 adalah tahun 0, -1, -2 dan seterusnya. Tahun kabisat (leap year) yang habis dibagi 4 untuk tahun negatif dirumuskan secara astronomis. Jadi, yang termasuk tahun kabisat adalah tahun 8, 4, 0, -4, -8, -12 dan seterusnya.

Kalender Gregorian Terjadinya perubahan kalender Julian menjadi kalender Gregorian karena adanya selisih antara panjang satu tahun dalam kalender Julian (365,25 hari) dengan panjang rata-rata tahun tropis (tropical year; 365,2422 hari). Dalam satu tahun terdapat selisih 0,0078 hari [=365,25 hari - 365,2422 hari] atau hanya sekitar 11 menit.

Selisih ini akan menjadi satu hari dalam jangka 128 tahun  Dalam ratusan atau ribuan tahun, selisih ini menjadi signifikan hingga beberapa hari. Jika dihitung dari tahun 325 (saat Konsili Nicaea menetapkan musim semi atau vernal ekuinoks jatuh pada 21 Maret) sampai dengan tahun 1582, terdapat selisih sebanyak: (1582 - 325) X 0,0078 hari = 9,8 hari atau hampir 10 hari!

Awal musim semi pada tahun 1582 jatuh pada tanggal 11 Maret, bukan sekitar tanggal 21 Maret seperti biasanya  Perayaan Paskah pun maju dari yang semestinya! Karena itulah, saat kalender Gregorian ditetapkan, tanggal melompat sebanyak 10 hari  Tanggal setelah 4 Oktober 1582 (Kamis) bukan 5 Oktober, melainkan 15 Oktober 1582 (Jumat).

Dalam kalender Gregorian, panjang rata-rata satu tahun adalah 365,2425 hari  Cukup dekat dengan rata-rata tahun tropis sebesar 365,2422 hari. Selisihnya dalam setahun adalah 0,0003 hari [= 365,2425 hari - 365,2422 hari]  akan terjadi perbedaan tiga hari setelah 10.000 tahun atau satu hari setelah sekitar 3300 tahun!

Dalam kalendar Gregorian, definisi tahun kabisat mengalami perubahan. Tahun bukan kelipatan 100 habis yang habis dibagi 4, tahun tersebut termasuk tahun kabisat. Contoh: tahun 1972 dan 2468 termasuk tahun kabisat. Tahun kelipatan 100 tetapi tidak habis dibagi 400, tahun tersebut bukan tahun kabisat. Jika habis dibagi 400, termasuk tahun kabisat. Jadi, tahun 1700, 1800, 1900 bukan tahun kabisat, sedangkan tahun 1600, 2000, 2400 termasuk tahun kabisat.

Dalam kalendar Gregorian, definisi tahun kabisat mengalami perubahan. Tahun bukan kelipatan 100 habis yang habis dibagi 4, tahun tersebut termasuk tahun kabisat. Contoh: tahun 1972 dan 2468 termasuk tahun kabisat. Tahun kelipatan 100 tetapi tidak habis dibagi 400, tahun tersebut bukan tahun kabisat. Jika habis dibagi 400, termasuk tahun kabisat. Jadi, tahun 1700, 1800, 1900 bukan tahun kabisat, sedangkan tahun 1600, 2000, 2400 termasuk tahun kabisat.

Kalender Hijriyah (Aritmatika) Kalender Hijriyah menggunakan peredaran bulan  rata-rata satu bulan sinodik adalah 29,530589 hari. Jumlah hari rata-rata dalam satu tahun = [29,530589 hari/bulan x 12 bulan] = 354,367068 hari. Dalam kalender Hijriyah aritmatika (bukan hasil observasi/rukyat), dalam 30 tahun (360 bulan) terdapat 11 tahun kabisat (355 hari) dan 19 tahun biasa (354 hari).

Kalender Hijriyah menggunakan peredaran bulan  rata-rata satu bulan sinodik adalah 29,530589 hari. Rata-rata hari dalam satu bulan (aritmatika): (11 X 355 + 19 X 354)/360 = 29,530556 hari. Dalam satu bulan, selisih antara satu bulan sinodik dengan satu bulan aritmatika adalah 0,000033 hari [=29,530589 hari - 29,530556 hari]  Menjadi satu hari setelah kira-kira lebih dari 2500 tahun!

Bagaimana mencari tahun kabisat? Yang menjadi tahun kabisat setiap 30 tahun tersebut adalah tahun ke-2, ke-3, ke-7, ke-10, ke-13, ke-15, ke-18, ke-21, ke-24, ke-26, dan tahun ke-29. Tambahan 1 hari dalam tahun kabisat diberikan ke bulan terakhir (Zulhijah). Bagaimana mencari tahun kabisat? Tahun kabisat dapat ditentukan dengan cara membagi tahun hijriyah yang bersangkutan dengan 30. Jika bersisa dan sisa tersebut sama dengan salah satu dari ke sebelas tahun kabisat, tahun itu adalah tahun kabisat.

Bagaimana mencari tahun kabisat? Tahun kabisat dapat ditentukan dengan cara membagi tahun hijriyah yang bersangkutan dengan 30. Jika bersisa dan sisa tersebut sama dengan salah satu dari ke sebelas tahun kabisat, tahun itu adalah tahun kabisat. Contoh: 1423 : 30 = 47 sisa 13. 1423 H adalah tahun kabisat (355 hari).

Julian Day Perubahan dari kalender Julian menjadi Gregorian membuat kesulitan tersendiri untuk membandingkan peristiwa astronomis yang terpisah dalam jangka waktu cukup lama. Untuk mengatasinya, diperkenalkan Julian Day  Banyaknya hari yang telah dilalui sejak hari Senin tanggal 1 Januari tahun 4713 SM (-4712) pada pertengahan hari atau pukul 12:00:00 UT.

JD 0 = 1 Januari -4712 pada 12:00:00 UT = 1,5 Januari -4712 (karena pukul 12 menunjukkan 0,5 hari) JD 0,5 = 2 Januari -4712 pada 00:00:00 UT JD 1 = 2,5 Januari -4712, demikian seterusnya. 4 Oktober 1582 = JD 2.299.159,5 15 Oktober 1582 = JD 2.299.160,5

Pemahaman terhadap Julian Day sangat penting, sebab menjadi syarat untuk dapat menghitung posisi benda langit (bulan, matahari, planet, dan lain-lain) yang selanjutnya dipakai untuk menentukan bulan baru (newmoon), waktu ibadah, dan lain-lain. Julian Day juga menjadi dasar untuk menentukan fenomena alam, seperti menghitung kapan terjadinya equinox dan solstice.

Metode untuk menghitung Julian Day untuk tanggal tertentu adalah: JD = 1.720.994,5 + INT(365,25*Y) + INT (30,6001*(M + 1)) + B + D Tahun adalah Y (Y dapat negatif, asalkan tidak lebih kecil dari -4712). Nomor bulan adalah M, di mana M = 1 untuk Januari, M = 2 untuk Februari dan seterusnya, hingga M = 12 untuk Desember. Nomor hari/tanggal adalah D. D dapat pula berbentuk pecahan. Namun perlu diperhatikan bahwa nilai maksimal D harus menyesuaikan dengan bulan M. Jika M > 2, M dan Y tidak berubah. Jika M = 1 atau 2, ganti M menjadi M + 12 dan Y menjadi Y - 1.

Untuk kalendar Gregorian, hitung A = INT(Y/100) dan B = 2 + INT(A/4) – A Contoh: Hitunglah Julian Day untuk hari kemerdekaan RI tanggal 17 Agustus 1945! Jawab: D = 17, M = 8, Y = 1945 A = INT(1945/100) = INT(19,45) = 19. B = 2 + INT(19/4) - 19 = 2 + 4 - 19 = -13. JD = 1720994,5 + INT(365,25 X 1945) + INT(30,6001 X 9) + (-13) + 17 = 2.431.684,5. 17 Agustus 1945 = JD 2.431.684,5

Contoh: Tentukan selang waktu antara dua gerhana matahari total yang terjadi pada tanggal 11 Juli 2010 dan 13 November 2012! Jawab: JD untuk kedua tanggal tersebut masing-masing adalah 2.455.388,5 dan 2.456.244,5. Selisih antara tanggal 11 Juli 2010 dan 13 Nopember 2012 adalah 856 hari.