BAB IV INDUKSI MATEMATIKA

Slides:



Advertisements
Presentasi serupa
MATHEMATICS INDUCTION AND BINOM THEOREM
Advertisements

Induksi Matematika.
Induksi Matematik TIN2204 Struktur Diskrit.
Rinaldi Munir/IF2151 Matematika Diskrit
Berapakah jumlah dari n bilangan ganjil positif pertama?
Induksi Matematika Materi Matematika Diskrit.
Induksi Matematis Mohammad Fal Sadikin.
7. INDUKSI MATEMATIKA.
Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir
Pertemuan ke 9.
Bahan Kuliah IF2091 Struktur Diskrit Oleh: Rinaldi Munir
Outline Definisi Prinsip Induksi Sederhana
OLEH: JEAN KEVIN LOUPATTY
Prinsip Induksi yang Dirampatkan
TEAM TEACHING MATEMATIKA DISKRIT
Definisi Induksi matematika adalah :
Induksi Matematika.
Induksi Matematika Nelly Indriani Widiastuti Teknik Informatika UNIKOM.
INDUKSI MATEMATIKA.
Induksi Matematik.
Induksi Matematika E-learning kelas 22 – 29 Desember 2015
Pertemuan ke 9.
Bahan kuliah Matematika Diskrit
Fungsi, induksi matematika dan teori bilangan bulat
Fungsi Oleh: Sri Supatmi,S.Kom Rinaldi Munir, Matematika Diskrit
FTI Universitas Mercu Buana Yogya Matematika Diskrit Rev 2014
Definisi Induksi matematika adalah :
BAB 4 INDUKSI MATEMATIKA.
Rinaldi Munir/IF091 Struktud Diskrit
Induksi Matematika.
BAB 5 Induksi Matematika
Induksi Matematika Sesi
induksi matematika Oleh: Sri Supatmi,S.Kom
FAKULTAS SAINS DAN TEKNOLOGI
FTI Universitas Mercu Buana Yogya Matematika Diskrit Rev 2013
INDUKSI MATEMATIKA Citra N., S.Si, MT.
Matematika Diskrit.
Induksi Matematik  .
Rinaldi Munir/IF2151 Matematika Diskrit
Logika Matematika Bab 5: Induksi Matematika
MARI BELAJAR MATEMATIKA BERSAMA
Aplikasi Induksi Matematik untuk membuktikan kebenaran program
QUANTIFIER (KUANTOR) dan Induksi matematika
Aplikasi Induksi Matematik untuk membuktikan kebenaran program
Pertemuan ke 9.
Kebijaksanaan Hanya dapat ditemukan dalam kebenaran
Induksi Matematika.
Mata Kuliah :Teori Bilangan
Induksi Matematik.
Rinaldi Munir/IF2151 Matematika Diskrit
Pengantar Matematika Diskrit
HIMPUNAN Oleh Cipta Wahyudi.
TEORI BILANGAN INDUKSI MATEMATIKA
Berapakah jumlah dari n bilangan ganjil positif pertama?
Pertemuan 4 Induksi Matematik.
HIMPUNAN.
Induksi Matematik Pertemuan 7 Induksi Matematik.
Induksi Matematika Sesi
Rinaldi Munir/IF091 Struktud Diskrit
Pertemuan ke 9.
Matematika Diskrit Oleh: Taufik Hidayat
Rinaldi Munir/IF091 Struktud Diskrit
ASSALAMU’ALAIKUM WR.WB
Rinaldi Munir/IF091 Struktud Diskrit
BAB 5 Induksi Matematika
Quantifier (Kuantor) dan Induksi matematika
1 Himpunan Bahan kuliah Matematika Diskrit. 2 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen,
QUANTIFIER (KUANTOR) dan Induksi matematika
Rinaldi Munir/IF091 Struktud Diskrit1 Induksi Matematik IF2151 Matematika Diskrit.
Rinaldi Munir/IF091 Struktud Diskrit1 Induksi Matematik IF2151 Matematika Diskrit.
Transcript presentasi:

BAB IV INDUKSI MATEMATIKA Induksi matematika adalah : Metode pembuktian untuk pernyataan perihal bilangan bulat. Induksi matematik merupakan teknik pembuktian yang baku di dalam matematika. waniwatining

Materi Induksi Matematik Pernyataan perihal bilangan bulat. Prinsip induksi sederhana Prinsip induksi yang dirampatkan Prinsip induksi kuat Prinsip induksi secara umum. waniwatining

1. Pernyataan Perihal Bilangan Bulat. Pernyataan perihal bilangan bulat mengkaitkan suatu masalah yang dihubungkan dengan bilangan bulat. Untuk memberikan ilustrasi mengenai pernyataan yang dimaksud, diperlihatkan dengan memberikan contoh berikut : waniwatining

Contoh 1 : Misalkan p(n) adalah pernyataan yang menyatakan :”Jumlah bilangan bulat positif dari 1 sampai n adalah n (n+1) / 2.” Buktikan bahwa p(n) benar. Jika dicoba dengan beberapa nilai n, memang timbul dugaan bahwa p(n) benar, misalnya untuk n = 5, p(5) adalah : “Jumlah bilangan bulat positif dari sampai 5 adalah 5 (5+1)/2. Terlihat bahwa : 1 + 2 + 3 + 4 + 5 = 15 = 5 (6) / 2 waniwatining

Contoh 2 : Jika ingin menemukan rumus jumlah dari n buah bilangan ganjil positif yang pertama. Misalnya untuk n = 1, 2, 3, 4, 5, perhatikan jumlah n bilangan ganjil positif pertama , n = 1  1 = 1 n = 2  1 + 3 = 4 n = 3  1 + 3 + 5 = 9 n = 4  1 + 3 + 5 + 7 = 16 n = 5  1 + 3 + 5 + 7 + 9 = 25 Dari nilai-nilai penjumlahan, bahwa jumlah n buah bilangan ganjil yang pertama adalah n2 waniwatining

2. Prinsip Induksi Sederhana Misalkan p(n) adalah pernyataan perihal bilangan bulat positif dan kita ingin membuktikan bahwa p(n) benar untuk semua bilangan bulat positif n. Untuk membuktikan pernyataan ini, kita hanya perlu menunjukan bahwa : 1. p(1) benar, dan 2. Untuk semua bilangan bulat positif n  1, jika p(n) benar maka p(n+1) juga benar. waniwatining

Basis Induksi dan Langkah Induksi Langkah 1 dinamakan Basis Induksi, sedangkan langkah 2 dinamakan Langkah Induksi. Langkah induksi berisi asumsi (andaian) yang menyatakan bahwa p(n) benar. Asumsi tersebut dinamakan hipotesis induksi. Bila kedua langkah tsb benar, maka sudah dibuktikan bahwa p(n) benar untuk semua bilangan bulat positif n. waniwatining

Basis induksi digunakan untuk memperlihatkan bahwa pernyataan tersebut benar bila n diganti dengan 1, yang merupakan bilangan bulat positif terkecil. Langkah induksi harus memperlihatkan bahwa p(n)  p(n+1) benar untuk semua bilangan bulat positif. waniwatining

3. Prinsip Induksi yang Dirampatkan. Jika ingin membuktikan bahwa pernyataan p(n) benar untuk semua bilangan bulat  n0 , prinsip induksi sederhana dapat dirampatkan untuk menunjukkannya, dengan cara sebagai berikut : 1. p (n0) benar, dan 2. Untuk semua bilangan bulat n  n0, jika p(n) benar maka p(n+1) juga benar. waniwatining

4. Prinsip Induksi Kuat Versi induksi yang lebih kuat diperlukan untuk membuktikan pernyataan mengenai bilangan bulat. Versi induksi yang lebih kuat adalah sebagai berikut : 1. p (n0) benar, dan 2. Untuk semua bilangan bulat n  n0, jika p(n0), p(n0+1),….p(n) benar maka p(n+1) juga benar. waniwatining

Versi induksi yang lebih kuat, mirip dengan induksi sederhana, kecuali bahwa pada angkah 2 kita mengambil hipotesis induksi yang lebih kuat bahwa semua pernyataan p(1), p(2), …., p(n) adalah benar daripada hipotesis yang menyatakan bahwa p(n) benar pada induksi sederhana Prinsip induksi kuat memungkinkan kita mencapai kesimpulan yang sama meskipun emberlakukan andaian yang lebih banyak. waniwatining

5. Bentuk Induksi Secara Umum Bentuk induksi secara umum dibuat supaya dapat diterapkan tidak hanya untuk pembuktian yang menyangkut himpunan bilangan bulat positif, tetapi juga pembuktian yang menyangkut himpunan objek yang lebih umum. Syaratnya himpunan objek itu harus memiliki keterurutan dan mempunyai elemen terkecil. waniwatining

Definisi : Relasi biner “<“ pada himpunan X dikatakan terurut dengan baik bila memiliki properti berikut : Diberikan x, y, z  X, jika x < y dan y < z, maka x < z. Diberikan x, y  X, salah satu dari kemungkinan ini benar: x < y dan y < x, atau x = y Jika A adalah himpunan bagian tidak kosong dari X, terdapat elemen x  A sedemikian sehingga x  y untuk semua y  A . Dengan kata lain, setiap himpunan bagian tidak kosong dari X mengandung elemen terkecil. waniwatining