Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu

Slides:



Advertisements
Presentasi serupa
Kelompok 1 - 2A Sekolah Tinggi Ilmu Statistik
Advertisements

DISTRIBUSI PROBABILITA KONTINU
Common Effect Model.
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
Varable Control Chart Individual, Cumulative Sum, Moving-Average, Geometric Moving-Average, Trend, Modified, Acceptance.
Pertemuan 02 Ukuran Numerik Deskriptif
Pengertian dan Peranan Statistika dan Data Statistik Pertemuan 01
1 Pertemuan 02 Ukuran Pemusatan dan Lokasi Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Pertemuan 05 Sebaran Peubah Acak Diskrit
Responsi Teori Pendukung
Ruang Contoh dan Peluang Pertemuan 05
Pendugaan Parameter Proporsi dan Varians (Ragam) Pertemuan 14 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 03 dan 04 Ukuran Variasi Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
UKURAN PENYEBARAN DATA
Sampling Methods Beberapa istilah
Population and sample. Population is complete actual/theoretical collection of numerical values (scores) that are of interest to the researcher. Simbol.
Masalah Transportasi II (Transportation Problem II)
1 Pertemuan 10 Fungsi Kepekatan Khusus Matakuliah: I0134 – Metode Statistika Tahun: 2007.
DISTRIBUSI PROBABILITA DISKRIT
Pertemuan 03 Ukuran Penyimpangan (Variasi)
PENDUGAAN PARAMETER Pertemuan 7
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
Sebaran Peluang Kontinu (I) Pertemuan 7 Matakuliah: I0014 / Biostatistika Tahun: 2008.
1 Pertemuan #2 Probability and Statistics Matakuliah: H0332/Simulasi dan Permodelan Tahun: 2005 Versi: 1/1.
1 Pertemuan 8 JARINGAN COMPETITIVE Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
DISTRIBUSI PROBABILITA KONTINU
1 HAMPIRAN NUMERIK SOLUSI PERSAMAAN LANJAR Pertemuan 5 Matakuliah: K0342 / Metode Numerik I Tahun: 2006 TIK:Mahasiswa dapat meghitung nilai hampiran numerik.
1 Pertemuan #3 Probability Distribution Matakuliah: H0332/Simulasi dan Permodelan Tahun: 2005 Versi: 1/1.
Sebaran Peluang Kontinu (II) Pertemuan 8 Matakuliah: I0014 / Biostatistika Tahun: 2008.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Ukuran Pemusatan dan Lokasi Pertemuan 03 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Electric Field Wenny Maulina. Electric Dipole A pair of equal and opposite charges q separated by a displacement d is called an electric dipole. It has.
Chapter 5 Discrete Random Variables and Probability Distributions Statistika.
Keuangan dan Akuntansi Proyek Modul 2: BASIC TOOLS CHRISTIONO UTOMO, Ph.D. Bidang Manajemen Proyek ITS 2011.
Smoothing. Basic Smoothing Models Moving average, weighted moving average, exponential smoothing Single and Double Smoothing First order exponential smoothing.
Ukuran Penyimpangan atau Disversi Pertemuan 04
PROBABILITY DISTRIBUTION
DISTRIBUSI BINOMIAL.
STATISTIKA CHATPER 4 (Perhitungan Dispersi (Sebaran))
Statistik TP A Pengujian Hipotesis Satu Populasi (Mean dan Proporsi)
Cartesian coordinates in two dimensions
Cartesian coordinates in two dimensions
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Distribusi Sampling Juweti Charisma.
Statistika Chapter 4 Probability.
Teori Sampling dan Distribusi Sampling
Pengujian Hipotesis (I) Pertemuan 11
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
DISTRIBUSI BINOMIAL.
Pertemuan 10 Distribusi Sampling
Presentasi Statistika Dasar
Pendugaan Parameter (I) Pertemuan 9
PENDUGAAN PARAMETER Pertemuan 8
Pertemuan 24 Teknik Searching
DISTRIBUSI PROBABILITA
Pendugaan Parameter (II) Pertemuan 10
REAL NUMBERS EKSPONENT NUMBERS.
Fungsi Distribusi Probabilitas Diskrit
VARIABEL ACAK (RANDOM VARIABLES)
Pertemuan 09 Pengujian Hipotesis 2
Fungsi Kepekatan Peluang Khusus Pertemuan 10
Pertemuan 05 Ukuran Deskriptif Lain
Semester Pendek FMIPA UGM 2005
PELUANG KEJADIAN Pasti terjadi, disebut kepastian, diberi simbol 1
Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana
Lecture Slides Elementary Statistics Eleventh Edition
Business Statistics for Contemporary Decision Making.
Kuliah ke.7 Elementary Statistics Eleventh Edition
Probability IIntroduction to Probability ASatisfactory outcomes vs. total outcomes BBasic Properties CTerminology IICombinatory Probability AThe Addition.
Hypothesis Testing Niniet Indah Arvitrida, ST, MT SepuluhNopember Institute of Technology INDONESIA 2008.
Transcript presentasi:

Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu Mata kuliah : A0392 - Statistik Ekonomi Tahun : 2010 Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu

Outline Materi: Sebaran Normal Normal Baku Sebaran Sampling rata-rata Sebaran Sampling proporsi

Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa akan dapat menghitung sebaran normal dan normal baku, menerapkan distribusi normal. 3

The Normal Distribution The formula that generates the normal probability distribution is: The shape and location of the normal curve changes as the mean and standard deviation change. Applet 4

The Standard Normal Distribution To find P(a < x < b), we need to find the area under the appropriate normal curve. To simplify the tabulation of these areas, we standardize each value of x by expressing it as a z-score, the number of standard deviations s it lies from the mean m. 5

The Standard Normal (z) Distribution Mean = 0; Standard deviation = 1 When x = m, z = 0 Symmetric about z = 0 Values of z to the left of center are negative Values of z to the right of center are positive Total area under the curve is 1. 6

Using Table 3 The four digit probability in a particular row and column of Table 3 gives the area under the z curve to the left that particular value of z. Area for z = 1.36 7

Using Table 3 Applet To find an area to the left of a z-value, find the area directly from the table. To find an area to the right of a z-value, find the area in Table 3 and subtract from 1. To find the area between two values of z, find the two areas in Table 3, and subtract one from the other. Remember the Empirical Rule: Approximately 99.7% of the measurements lie within 3 standard deviations of the mean. Remember the Empirical Rule: Approximately 95% of the measurements lie within 2 standard deviations of the mean. P(-3  z  3) = .9987 - .0013=.9974 P(-1.96  z  1.96) = .9750 - .0250 = .9500 8

Find the value of z that has area .25 to its left. Working Backwards Applet Find the value of z that has area .25 to its left. Look for the four digit area closest to .2500 in Table 3. What row and column does this value correspond to? 3. z = -.67 4. What percentile does this value represent? 25th percentile, or 1st quartile (Q1) 9

Find the value of z that has area .05 to its right. Working Backwards Applet Find the value of z that has area .05 to its right. The area to its left will be 1 - .05 = .95 Look for the four digit area closest to .9500 in Table 3. Since the value .9500 is halfway between .9495 and .9505, we choose z halfway between 1.64 and 1.65. z = 1.645 10

Finding Probabilities for th General Normal Random Variable To find an area for a normal random variable x with mean m and standard deviation s, standardize or rescale the interval in terms of z. Find the appropriate area using Table 3. 1 z Example: x has a normal distribution with m = 5 and s = 2. Find P(x > 7). 11

Example Applet The weights of packages of ground beef are normally distributed with mean 1 pound and standard deviation .10. What is the probability that a randomly selected package weighs between 0.80 and 0.85 pounds? 12

Example Applet What is the weight of a package such that only 1% of all packages exceed this weight? 13

Sampling Distribution of Means the mean of the sample means the standard deviation of sample mean  (often called standard error of the mean) µx = µ  x = n

Distribusi sampling satu rata-rata Bila sampel acak berukuran n diambil dari populasi berukuran N yang mempunyai rata-rata  dan simpangan baku s, maka untuk n yang cukup besar distribusi sampel bagi rata-rata akan menghampiri distribusi normal dengan m = m dan s = Dengan demikian, Z = 15 15

Example: Given the population of men has normally distributed weights with a mean of 172 lb and a standard deviation of 29 lb, b) if 12 different men are randomly selected, find the probability that their mean weight is greater than 167 lb.

The Normal Approximation to the Binomial We can calculate binomial probabilities using The binomial formula The cumulative binomial tables Do It Yourself! applets When n is large, and p is not too close to zero or one, areas under the normal curve with mean np and variance npq can be used to approximate binomial probabilities. 17

Approximate a Binomial Distribution with a Normal Distribution if: np  5 nq  5 then µ = np and  = npq and the random variable has distribution. (normal) a

Approximating the Binomial Make sure to include the entire rectangle for the values of x in the interval of interest. This is called the continuity correction. Standardize the values of x using Make sure that np and nq are both greater than 5 to avoid inaccurate approximations! 19

The normal approximation is ok! Example Suppose x is a binomial random variable with n = 30 and p = .4. Using the normal approximation to find P(x  10). n = 30 p = .4 q = .6 np = 12 nq = 18 The normal approximation is ok! 20

Applet Example 21

The normal approximation is ok! Example A production line produces AA batteries with a reliability rate of 95%. A sample of n = 200 batteries is selected. Find the probability that at least 195 of the batteries work. The normal approximation is ok! Success = working battery n = 200 p = .95 np = 190 nq = 10 22

Distribusi sampling beda 2 Rata-rata Bila sampel acak bebas berukuran n1 dan n2 diambil dari populasi berukuran N1 dan N2 dengan rata-rata 1 dan 2 , dan simpangan baku s1 dan s2, maka untuk n1 dan n2 yang cukup besar distribusi sampel bagi beda 2 rata-rata akan menghampiri distribusi normal dengan Dengan demikian, 23 23

Distribusi sampling beda 2 proporsi Bila sampel acak bebas berukuran n1 dan n2 dengan proporsi diambil dari populasi berukuran N1 dan N2 dengan proporsi p1 dan p2, dan simpangan baku p1q1/n1 dan p2q2/n2s2, maka untuk n1 dan n2 yang cukup besar distribusi sampel bagi beda 2 proporsi akan menghampiri distribusi normal dengan Dengan demikian, 24 24

SELAMAT BELAJAR SEMOGA SUKSES SELALU 25