Dr. Nur Aini Masruroh Deterministic mathematical modeling.

Slides:



Advertisements
Presentasi serupa
DIFERENSIAL FUNGSI SEDERHANA (ORDINARY DIFFERENTIAL)
Advertisements

Dimas Firmanda Al Riza, ST, M.Sc
Function.
PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION)
Diferensial Fungsi Majemuk
FLOW INJECTION ANALYSIS (Analisis dalam sistem aliran)
Economic models Consept of sets. Ingredients of mathematical models An economic model is merely a theoretical framework, and there is no inherent reason.
RANGKAIAN LOGIKA KOMBINASIONAL
SUBPROGRAM IN PASCAL PROCEDURE Lecture 5 CS1023.
Validitas & Reliabilitas
Game Theory Purdianta, ST., MT..
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
Teorema Green.
Center of Young Scientists Mummy Method for Determination of 3D Irregular Body Surface Area Pasca Nadia Fitri, et. al. Pandapotan Harahap, M.Pd., M.P.Fis.
Diferensial Fungsi Majemuk
1 DATA STRUCTURE “ STACK” SHINTA P STMIK MDP APRIL 2011.
Proses Stokastik Semester Ganjil 2013/2014
BLACK BOX TESTING.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Research Design (Cont). Jenis Perancangan Riset Jenis perancangan mana yg akan digunakan ? Peneliti perlu memikirkan tentang apa yang mereka inginkan.
Testing Implementasi Sistem Oleh :Rifiana Arief, SKom, MMSI
1 Session 4 Decision Making For Computer Operations Management (Linear Programming Method)
Inventory Management. Introduction Basic definitions ? An inventory is an accumulation of a commodity that will be used to satisfy some future demand.
PENDUGAAN PARAMETER Pertemuan 7
 1. Explaining the definition of linear equation with one variable.  2. Explaining the characteristics of linear equation with one variable. 3. Determining.
ANALISIS EKSPLORASI DATA
1 Pertemuan 25 Matakuliah: I0044 / Analisis Eksplorasi Data Tahun: 2007 Versi: V1 / R1 Analisis Regresi Ganda (I) : Pendugaan Model Regresi.
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
1 Pertemuan #2 Probability and Statistics Matakuliah: H0332/Simulasi dan Permodelan Tahun: 2005 Versi: 1/1.
1 HAMPIRAN NUMERIK SOLUSI PERSAMAAN LANJAR Pertemuan 5 Matakuliah: K0342 / Metode Numerik I Tahun: 2006 TIK:Mahasiswa dapat meghitung nilai hampiran numerik.
1 Pertemuan 24 Matakuliah: I0214 / Statistika Multivariat Tahun: 2005 Versi: V1 / R1 Analisis Struktur Peubah Ganda (IV): Analisis Kanonik.
1 Pertemuan 11 Function dari System Matakuliah: M0446/Analisa dan Perancangan Sistem Informasi Tahun: 2005 Versi: 0/0.
Bayu Priyambadha, S.Kom.  Classes, which are the "blueprints" for an object and are the actual code that defines the properties and methods.  Objects,
Gunawan. SISTEM PENILAIAN KKomponen Penilaian : AAbsensi (10 %) TTugas/Quis (10 %) UUjian I (mid semester) (40 %) UUjian II (akhir semester)
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Chapter 10 – The Design of Feedback Control Systems PID Compensation Networks.
Suharmadi Sanjaya - Matematika ITS. BACKGROUND A Good course has a clear purpose: Applied Mathematics is alive and very vigorous Teaching of Apllied Mathematics.
Grafika Komputer dan Visualisasi Disusun oleh : Silvester Dian Handy Permana, S.T., M.T.I. Fakultas Telematika, Universitas Trilogi Pertemuan 15 : Kurva.
MATERI KULIAH PEMODELAN dan SIMULASI.
KOMUNIKASI DATA Materi Pertemuan 3.
Recurrence relations.
LIMIT FUNGSI LIMIT FUNGSI ALJABAR.
Pengujian Hipotesis (I) Pertemuan 11
TUGAS PENGENDALIAN KUALITAS
BY EKA ANDRIANI NOVALIA RIZKANISA VELA DESTINA
OOAD – TI S1 Defri Kurniawan UDINUS
Parabola Parabola.
the formula for the standard deviation:
Two-and Three-Dimentional Motion (Kinematic)
ANALISA REGRESI LINEAR DAN BERGANDA
Matematika Pertemuan 16 Matakuliah : D0024/Matematika Industri II
Pertemuan Kesembilan Analisa Data
PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION)
Pertemuan Kesepuluh Data Analysis
Linear Programming.
Teknik Pengujian Software
Manajemen Proyek Perangkat Lunak (MPPL)
ANALISIS MULTIVARIATE
Master data Management
Analisis Korelasi dan Regresi Berganda Manajemen Informasi Kesehatan
Matematika PERSAMAAN KUADRAT Quadratic Equations Quadratic Equations
Magnitude and Vector Physics 1 By : Farev Mochamad Ihromi / 010
Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana
ENGINEERING SCIENCE IS ABOUT SOLVING PROBLEMS
TEORI PROBABILITAS by WAHYUYANTI (WYT)
Business Statistics for Contemporary Decision Making.
ENGINEERING RESEARCH IS A QUANTITATIVE RESEARCH
BERNOULLI EQUATIONS Lecture slides by Yosua Heru Irawan.
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
Diferensial Fungsi Majemuk
Transcript presentasi:

Dr. Nur Aini Masruroh Deterministic mathematical modeling

Model building Not satisfactory Satisfactory StartPrior knowledge Design of experiment System System behavior System characterization Adequate model Validation Make changes Mathematical model Parameter estimation Mathematical formulation Model behavior Analysis Computational Analytical New knowledge Abstract/ mathematical Real/physical Interaction between real and abstract

Basic steps  Four basic steps in mathematical modeling:  System characterization  Mathematical model  Analysis  Validation

Classification of mathematical formulations  Static formulation  To model deterministic static system  Involve either algebraic equations or function optimization with one or more variables  There is one-to-one correspondence between variables of the formulation and variables of the system characterization.  Dynamic formulation  Involve dependent and independent variables  The formulation is a function of time Time is one of the characteristics of independent variable

Static formulation: algebraic equation  Typical form: G(x, y, θ)=0  If used to describe simulation model: G: function x: input variables y: output variables θ : parameters  Used in fitting curves or surface to a set of generated data points when the system is characterized as black box  Example: case study A (Murthy and Page, 1990)

Static formulation: Optimization model  Typical form: Maximize f(x,θ) x Subject to a set of constraints G(x, θ) ≥ 0  It can be linear/non-linear/integer programming  Example: case study C (Murthy and Page, 1990)

Dynamic formulation  Types of dynamic formulation:  1 independent variable Discrete independent variable (case 1) Continuous independent variable (case 2)  More than 1 independent variables Discrete independent variable (case 3) Continuous independent variable (case 4)

Case 1  Dependent variables are functions of 1 independent variable which takes on only discrete values  Suitable for modeling systems with discrete time characterization  General equation formulation: Z k+1 = g k (Z k, Z k-1,…,Z k-nk ; u k, u k-1,…u k-mk ; θ k ), -∞ < k < ∞, u is a known sequence, θ is parameters

Example Sebuah perusahaan furniture menerima kontrak selama 2 bulan untuk memproduksi kursi. Berdasarkan kontrak tersebut, pada akhir bulan pertama, perusahaan sanggup mengirim 80 buah kursi dan 120 kursi pada akhir bulan kedua. Setelah dihitung, perkiraan biaya yang dibutuhkan untuk memproduksi kursi tersebut dapat didekati dengan persamaan 50x + 0.2x 2 $/bulan dengan x adalah jumlah kursi yang diproduksi pada bulan tersebut. Apabila terdapat kelebihan jumlah kursi yang diproduksi, akan timbul biaya penyimpanan sebesar $8/kursi/bulan. Kapasitas produksi perusahaan tersebut memungkinkan untuk memproduksi 200 kursi per bulan. Karena kursi pesanan tersebut spesifik, maka perusahaan tidak mempunyai stok awal (no initial inventory) dan tidak ingin ada sisa produksi pada akhir bulan kedua. Misalkan x 1 adalah jumlah kursi yang diproduksi di bulan 1 dan x 2 adalah jumlah kursi yang diproduksi di bulan 2, buatlah model matematika (NLP with constraints) untuk kasus diatas!

Case 2  Dependent variables are continuous functions of the independent variable (t) which takes on a continuous range of values  It can be  Ordinary differential equation Simple form:  Integral equation Example:  Differential difference equation Example: dy/dt = - y 2 (t-h/2)

Case 3  Similar to case 1 except there are two or more independent variables  The dependence variables can be viewed as sequences with two or more indices, i.e. N tl, N tlj, etc

Case 4  Dependent variables are continuous functions of two or more independent variables which take on a continuous range of values  Example: dependent variables: u(t,x), v(t,x,y), w(t,x,y,z), etc  Formulations are given by equation involving the dependent variables and the partial derivative of the dependent variables with respect to the independent variables

Tugas 1  Jika jaringan logistik (mulai dari supplier sampai ke konsumen) dalam sebuah supply chain management dianggap sebagai sebuah system, deskripsikan selengkap mungkin karakter dari system tersebut. Ambillah sebuah contoh kasus yang ada dalam SCM, rumuskan masalahnya, dan buatlah model sederhananya dengan menjelaskan asumsi-asumsi yang anda gunakan. Tentukan pula apa yang menjadi variabel dan parameter (jika ada) yang anda gunakan.