1 HAMPIRAN NUMERIK SOLUSI PERSAMAAN LANJAR Pertemuan 5 Matakuliah: K0342 / Metode Numerik I Tahun: 2006 TIK:Mahasiswa dapat meghitung nilai hampiran numerik.

Slides:



Advertisements
Presentasi serupa
Review Operasi Matriks
Advertisements

Design and Analysis of Algorithm Recursive Algorithm Analysis
Matematika rekayasa TL 2105 rofiq iqbal.
Deret Taylor.
Review : Invers Matriks
2. Introduction to Algorithm and Programming
PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION)
Sistem Persamaan Linear
Kerjakan Latihan ini dan persiapkan diri anda dengan baik
Linear Equation. Example i1i1 i2i2 i3i3 V1V1 V2V2 R1R1 R2R2 R3R3 R4R4 R5R5.
Game Theory Purdianta, ST., MT..
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
Penyelesaian Persamaan Linier Simultan
Perancangan Database Pertemuan 07 s.d 08
Proses Stokastik Semester Ganjil 2013/2014
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
6s-1LP Metode Simpleks William J. Stevenson Operations Management 8 th edition OPERATIONS RESEARCH Enos.
Ruang Contoh dan Peluang Pertemuan 05
Masalah Transportasi II (Transportation Problem II)
Transformasi Linear dan Sistem Persamaan Linear Pertemuan 5
1 Pertemuan 25 Matakuliah: I0044 / Analisis Eksplorasi Data Tahun: 2007 Versi: V1 / R1 Analisis Regresi Ganda (I) : Pendugaan Model Regresi.
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
1 Pertemuan 8 JARINGAN COMPETITIVE Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
1 Pertemuan #3 Probability Distribution Matakuliah: H0332/Simulasi dan Permodelan Tahun: 2005 Versi: 1/1.
MATRIKS.
Hampiran numerik fungsi (Interpolasi dan Regressi) Pertemuan 6
1 Pertemuan 12 WIDROW HOFF LEARNING Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Expectation Maximization. Coin flipping experiment  Diberikan koin A dan B dengan nilai bias A dan B yang belum diketahui  Koin A akan memunculkan head.
Suharmadi Sanjaya - Matematika ITS. BACKGROUND A Good course has a clear purpose: Applied Mathematics is alive and very vigorous Teaching of Apllied Mathematics.
Numerical Methods Semester Genap tahun 2015/2016 M. Ziaul Arif Jurusan Matematika - FMIPA Lecture 3 : Roots of Nonlinear equation.
Jartel, Sukiswo Sukiswo
Penyelesaian Persamaan Linier Simultan
Aplikasi Rekursif.
HAMPIRAN NUMERIK PENEYELESAIAN SISTEM PERSAMAAN LINIER Pertemuan 5
ALGORITMA SIMPLEX Adalah prosedure aljabar untuk mencari solusi optimal sebuah model linear programming, LP.
Linear algebra Yulvi zaika.
Induksi Matematika.
07/11/2017 BARISAN DAN DERET KONSEP BARISAN DAN DERET 1.
Metode Iterasi Gauss-Seidel Penyelesaian Sistem Persamaan Linier
Recurrence relations.
SISTEM PERSAMAAN LINIER SIMULTAN
Cartesian coordinates in two dimensions
Konsep pemrograman LOOP
Cartesian coordinates in two dimensions
Statistika Chapter 4 Probability.
Kode Hamming.
Pengujian Hipotesis (I) Pertemuan 11
SISTEM PERSAMAAN LINIER 2
Review Operasi Matriks
Algorithms and Programming Searching
Two-and Three-Dimentional Motion (Kinematic)
REAL NUMBERS EKSPONENT NUMBERS.
FACTORING ALGEBRAIC EXPRESSIONS
Sistem Persamaan Linear
Measuring Eror Kelompok Absen 5-8.
Metode Iterasi Jacobi & Iterasi Gauss Seidel
PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION)
Metode Dekomposisi LU, Iterasi Jacobi & Iterasi Gauss Seidel
Sistem Persamaan Linear
Analisis Korelasi dan Regresi Berganda Manajemen Informasi Kesehatan
Matematika PERSAMAAN KUADRAT Quadratic Equations Quadratic Equations
Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana
Penyelesaian Persamaan Linier Simultan
Simultaneous Linear Equations
SISTEM PERSAMAAN LINIER 2
Operasi Matriks Dani Suandi, M.Si..
Right, indonesia is a wonderful country who rich in power energy not only in term of number but also diversity. Energy needs in indonesia are increasingly.
Vector. A VECTOR can describe anything that has both MAGNITUDE and DIRECTION The MAGNITUDE describes the size of the vector. The DIRECTION tells you where.
Transcript presentasi:

1 HAMPIRAN NUMERIK SOLUSI PERSAMAAN LANJAR Pertemuan 5 Matakuliah: K0342 / Metode Numerik I Tahun: 2006 TIK:Mahasiswa dapat meghitung nilai hampiran numerik solusi persamaan lanjar

2 PERTEMUAN 5 HAMPIRAN NUMERIK SOLUSI PERSAMAAN LANJAR TIK:Mahasiswa dapat meghitung nilai hampiran numerik solusi persamaan lanjar

3 Bentuk umum persamaan lanjar (linier) bujur sangkar: Untuk i = 1,2,3,…,n

4 Solusi persamaan lanjar Eliminasi Gauss Eliminasi Gauss- Jordan Matriks balikan Dekomposisi LU Iterasi Jacobi Iterasi Gauss- Seidel

5 Gauss Elimination Consider n equations in n unknowns The solution vector, x, for this system of equations remains unchanged if either of the following fundamental row operations are performed: –Multiply or divide any equation by a constant. –Replace any equation by the sum of that equation and any other equation.

6 Forward Elimination b’ k = b k (a 11 ) – b 1 (a k1 ) k = 2,3,4,…,n

7 Forward Elimination b’ k = b k (a ’ 22 ) – b 2 (a k2 ) k = 3,4,…,n

8 Forward Elimination

9 Back Substitution Finally

10 Gauss Elimination

11 Gauss Elimination

12 Gauss Elimination

13 Example Forward Elimination

14 Example Back Substitution

15 GAUSS-JORDAN ELIMINATON

16 GAUSS-JORDAN ELIMINATON

17 Contoh: Selesaikan SPL berikut dengan eliminasi Gass-Jordan Jawaban: Matriks perluasan(augmented matrix) dari koefisien SPL: b ’ 1 = b 1 /3

18 b ’ 2 = b 2 – 0.1 b 1 b ’ 3 = b 3 – 0.3 b 1 b ” 2 = b ’ 2 /

19 b ” 1 = b ’ b ” 2 b ” 3 = b ’ b” 2 b ”’ 3 = b ” 3 /

20 b ”’ 1 = b ” b ”’ 3 b ”’ 2 = b ’’ b”’ 3

21 Iterative Methods Consider the linear system

22 Solution Methods Gauss Elimination – Subject to roundoff errors and ill conditioning Iterative methods -- Alternative to elimination method Take initial guess of solution and then iterate to obtain improved estimates of the solution Jacobi and Gauss-Seidel methods Work well for large sets of equations

23 Iterative Methods Rearrange the equations so that an unknown is on the left-hand side of each equation: Initial guess

24 Jacobi Method Initial guess Next approximation of the solution

25 Jacobi Method After k iterations of this process

26 Example – Jacobi Method System of 3 equations in 3 unknowns Rearrange

27 Example – Jacobi Method Initial guess After 20 iterations

28 Errors and Stopping Criteria How do we know when to stop? Two major sources of error in numerical methods: –Roundoff error: Computers represent quantities with a finite number of digits –Truncation error: Numerical methods employ approximations to represent exact mathematical operations and quantities Consider the error between the numerical and analytical solutions –True value –Approximate value

29 Error Measures True value = Approximate value + Error  = Error = True value - Approximate value  r = relative error d = significant digits

30 Example Pi ~ Better approximation x = Find the error, relative error and the number of significant digits in the approximation.

31 Error Perkiraan  A is the approximate error between the current approximate value and our previous approximate value

32 Example Estimate exp(x) for x = 0.5 by adding more and more terms to the sequence and computing the errors after adding each new term. Add terms until the estimate is valid to three significant digits. From a calculators x =

33 Example Using only the first term of the series, Using the first and second terms of the series,and so on … # of TermsResult 

34 Jacobi Methode We stop when

35 Gauss Seidel Methode The current approximation of one of the unknowns is available for use after each step. This information could be used immediately in the calculation of the next unknown

36 Contoh metode Gauss-Seidel after 1 iteration of the method convenient initial guess

37 after 2 nd iterations after 9 th iterations after 1 st iteration

38 Terima kasih