FISIKA KUANTUM MAF 1507 (4 sks)

Slides:



Advertisements
Presentasi serupa
FISIKA TERMAL BAGIAN 2.
Advertisements

ANALISIS INSTRUMEN I PENDAHULUAN SPEKTROSKOPI Arie BS.
Universitas Jenderal Soedirman Purwokerto FISIKA DASAR II GEOMETRIC OPTICS.
PHYSICS AND SYSTEM UNITS AMOUNT
KULIAH I MEKANIKA TEKNIK PENDAHULUAN
Analisis spektra UV-Vis senyawa kompleks
Common Effect Model.
Validitas & Reliabilitas
Korelasi Linier KUSWANTO Korelasi Keeratan hubungan antara 2 variabel yang saling bebas Walaupun dilambangkan dengan X dan Y namun keduanya diasumsikan.
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
Rumus-rumus ini masihkah anda ingat?
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Propagasi Gelombang Pertemuan 8 Matakuliah: H0122 / Dasar Telekomunikasi Tahun: 2008.
Research Design (Cont). Jenis Perancangan Riset Jenis perancangan mana yg akan digunakan ? Peneliti perlu memikirkan tentang apa yang mereka inginkan.
Medan Listrik (Electric fields)
1. Properties of Electric Charges 2. Coulomb’s law 3. The Electric Fields 4. Electrics Field of a Continuous Charge Distribution 5. Electric Field Lines.
Universitas Jenderal Soedirman Purwokerto FISIKA DASAR II Oleh : Mukhtar Effendi.
Ruang Contoh dan Peluang Pertemuan 05
Masalah Transportasi II (Transportation Problem II)
Bab 12 Gelombang Elektromagnetik
Bina Nusantara Mata Kuliah: K0194-Pemodelan Matematika Terapan Tahun : 2008 Aplikasi Model Markov Pertemuan 22:
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
Shear Joints under eccentric loads Joints can and should be loaded in shear so that the fasteners see no additional stress beyond the initial tightening.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Review. 2. The failures of Classical Physics:  Black-body radiations Medan elektromagnetic adalah kumpulan osilator harmonik. 1 osilator = 1 frekuensi.
Chapter 10 – The Design of Feedback Control Systems PID Compensation Networks.
Electric Field Wenny Maulina. Electric Dipole A pair of equal and opposite charges q separated by a displacement d is called an electric dipole. It has.
Comparative Statics Slutsky Equation
Smoothing. Basic Smoothing Models Moving average, weighted moving average, exponential smoothing Single and Double Smoothing First order exponential smoothing.
STATISTIKA CHATPER 4 (Perhitungan Dispersi (Sebaran))
GERAK GELOMBANG.
KOMUNIKASI DATA Materi Pertemuan 3.
ELECTROMAGNETICAL WAVES
THE OLD QUANTUM THEORY T. Hidayat KK Astronomi - ITB
07/11/2017 BARISAN DAN DERET KONSEP BARISAN DAN DERET 1.
KOMUNIKASI DATA Materi Pertemuan 2.
Dari Teori Maxwell: Radiasi elektromagnetik memiliki kandungan momentum p per satuan volume sebesar: p = E/c dengan E menyatakan kandungan energi per satuan.
Lecture 7 Thermodynamic Cycles
Creatif by : Nurlia Enda
1. Photoelectric effect photon K A V Potentiometer electron
Pengujian Hipotesis (I) Pertemuan 11
4/07/06 Radiasi Benda Hitam (Blackbody Radiation)
Mole Concept For Technological And Agriculture
Work and Energy (Kerja dan Energi)
Two-and Three-Dimentional Motion (Kinematic)
Kelompok 6 Nurlia Enda Hariza NiMade Mahas
Fisika Dasar II (PAF 08112) Mukhtar Effendi.
Standar Kompetensi : 1. Memahami struktur atom, sifat-sifat periodik unsur, dan ikatan kimia Kompetensi Dasar: 1.1. Memahami struktur atom berdasarkan.
Schrodinger’s Wave Function
P B G L T R O G O N I E A T U A I A P U U N N G [TGS7404] 2 SKS teori
HYDROGEN ATOM SPECTRUM Cahaya yang dihasilkan oleh atom-atom gas hidrogen dan dianalisa dengan spektrometer membentuk spektrum garis yaitu terdiri.
ATOMIC STRUCTURE.
Bab 12 Gelombang Elektromagnetik
Standar Kompetensi : 1. Memahami struktur atom, sifat-sifat periodik unsur, dan ikatan kimia Kompetensi Dasar: 1.1. Memahami struktur atom berdasarkan.
Magnitude and Vector Physics 1 By : Farev Mochamad Ihromi / 010
Class XII Semester 5 Compiler : SMK Country 7 Bandung
Physical Property Of Corn Seed
Group 3 About causal Conjunction Member : 1. Ahmad Fandia R. S.(01) 2. Hesti Rahayu(13) 3. Intan Nuraini(16) 4. Putri Nur J. (27) Class: XI Science 5.
Persamaan Schroedinger II Erwin Schrödinger ( ) A careful analysis of the process of observation in atomic physics has shown that the subatomic.
By Yulius Suprianto Macroeconomics | 02 Maret 2019 Chapter-5: The Standard of Living Over Time and A Cross Countries Source: http//
BERNOULLI EQUATIONS Lecture slides by Yosua Heru Irawan.
Right, indonesia is a wonderful country who rich in power energy not only in term of number but also diversity. Energy needs in indonesia are increasingly.
Website: Website Technologies.
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
Hukum Konservasi Muatan dan energi.
Poynting’s Theorem Beberapa Contoh.
Draw a picture that shows where the knife, fork, spoon, and napkin are placed in a table setting.
2. Discussion TASK 1. WORK IN PAIRS Ask your partner. Then, in turn your friend asks you A. what kinds of product are there? B. why do people want to.
Wednesday/ September,  There are lots of problems with trade ◦ There may be some ways that some governments can make things better by intervening.
Transcript presentasi:

FISIKA KUANTUM MAF 1507 (4 sks) Waktu Kuliah: Selasa : 08.50-10.30 Kamis : 08.50-10.30 Kamis Ruang Kuliah 70 Lantai 1Gedung Fisika JURUSAN FISIKA Fisika Kuantum FMIPA MAF 1507 SUJITO. Semester Gasal 2015/2016

Apa itu Fisika Kuantum? Fisika Kuantum adalah cabang ilmu fisika yang berkembang pada akhir tahun 1800 dan awal tahun 1900 ketika sejumlah gejala fisika yang munul waktu itu tidak dapat dijelaskan secara benar dengan menggunakan konsep/teori fisika klasik yang telah ada (misal Hukum2 Newton tentang gerak, teori cahaya yang ada, radiasi termal, dlsb.) Ada dua ide dasar terkait fisika kuantum: Bahwa energi itu diskret atau tidak kontinyu, terkuantisasi dalam bentuk paket-paket energi. Bahwa partikel bersifat gelombang dengan panjang gelombang yang sangat pendek. Dalam kaitan dengan hal ini, pertanyaan yang muncul adalah, “dapatkah kita memahami fenomena yang ada di jagad raya ini yang tidak mengikuti hukum2 yang ada dalam fisika klasik hanya dengan menggunakan dua ide dasar di atas?” Dalam kuliah ini kita akan mulai dengan beberapa hasil eksperimen yang menunjukkan bahwa konsep fisika klasik tidak dapat menjelaskan hasil eksperimen tersebut dan menggunakan dua ide kunci di atas untuk menjelaskannya. JURUSAN FISIKA FMIPA SUJITO Semester Gasal 2015/2016

SYLLABUS

SYLLABUS (cont)

Efek Fotolistrik dan Compton Percobaan Davisson-Germer, percobaan ccelah ganda Cahaya sebagai partkel dalam fisika kuantum Gelombang partikel dalam fisika kuantum Dualitas partikel-gelombang Postulates: Operator,nilaieigen dan fungsieigen, ekspansi, komutator, nilai harap, evolusi waktu Persaman Schrodinger bergantung waktu Fismat I & II Metode separasi variabel Persamaan Schrodinger bebas waktu Metode Frobenius Osilasi harmonik Persamaan Legendre n Fismat Atom Hidrogen Permasalahan 1D Operator Momentuum sudut Solusi bag radial Solusi bag sudut

PENILAIAN Nilai Tugas (20%) Nilai Mid Term (40%) Nilai UAS (40%)

WAVE PARTICLE DUALITY Evidence for wave-particle duality Photoelectric effect Compton effect Electron diffraction Interference of matter-waves Consequence: Heisenberg uncertainty principle

PHOTOELECTRIC EFFECT Hertz J.J. Thomson When UV light is shone on a metal plate in a vacuum, it emits charged particles (Hertz 1887), which were later shown to be electrons by J.J. Thomson (1899). Light, frequency ν Vacuum chamber Electric field E of light exerts force F=-eE on electrons. As intensity of light increases, force increases, so KE of ejected electrons should increase. Electrons should be emitted whatever the frequency ν of the light, so long as E is sufficiently large For very low intensities, expect a time lag between light exposure and emission, while electrons absorb enough energy to escape from material Classical expectations Collecting plate Metal plate I Ammeter Potentiostat

PHOTOELECTRIC EFFECT (cont) Einstein Maximum KE of ejected electrons is independent of intensity, but dependent on ν For ν<ν0 (i.e. for frequencies below a cut-off frequency) no electrons are emitted There is no time lag. However, rate of ejection of electrons depends on light intensity. Actual results: Einstein’s interpretation (1905): Light comes in packets of energy (photons) An electron absorbs a single photon to leave the material Millikan The maximum KE of an emitted electron is then Work function: minimum energy needed for electron to escape from metal (depends on material, but usually 2-5eV) Verified in detail through subsequent experiments by Millikan Planck constant: universal constant of nature

Photoemission experiments today Modern successor to original photoelectric effect experiments is ARPES (Angle-Resolved Photoemission Spectroscopy) February 2000 Emitted electrons give information on distribution of electrons within a material as a function of energy and momentum

SUMMARY OF PHOTON PROPERTIES Relation between particle and wave properties of light Energy and frequency Also have relation between momentum and wavelength Relativistic formula relating energy and momentum For light and Also commonly write these as wavevector angular frequency hbar

COMPTON SCATTERING Compton Compton (1923) measured intensity of scattered X-rays from solid target, as function of wavelength for different angles. He won the 1927 Nobel prize. X-ray source Target Crystal (selects wavelength) Collimator (selects angle) θ Detector Result: peak in scattered radiation shifts to longer wavelength than source. Amount depends on θ (but not on the target material). A.H. Compton, Phys. Rev. 22 409 (1923)

COMPTON SCATTERING (cont) Classical picture: oscillating electromagnetic field causes oscillations in positions of charged particles, which re-radiate in all directions at same frequency and wavelength as incident radiation. Change in wavelength of scattered light is completely unexpected classically Incident light wave Oscillating electron Emitted light wave Compton’s explanation: “billiard ball” collisions between particles of light (X-ray photons) and electrons in the material θ Before After Electron Incoming photon scattered photon scattered electron

COMPTON SCATTERING (cont) θ Before After Electron Incoming photon scattered photon scattered electron Conservation of energy Conservation of momentum From this Compton derived the change in wavelength

COMPTON SCATTERING (cont) Note that, at all angles there is also an unshifted peak. This comes from a collision between the X-ray photon and the nucleus of the atom since

WAVE-PARTICLE DUALITY OF LIGHT In 1924 Einstein wrote:- “ There are therefore now two theories of light, both indispensable, and … without any logical connection.” Evidence for wave-nature of light Diffraction and interference Evidence for particle-nature of light Photoelectric effect Compton effect Light exhibits diffraction and interference phenomena that are only explicable in terms of wave properties Light is always detected as packets (photons); if we look, we never observe half a photon Number of photons proportional to energy density (i.e. to square of electromagnetic field strength)

GELOMBANG MATERI Relasi de Broglie We have seen that light comes in discrete units (photons) with particle properties (energy and momentum) that are related to the wave-like properties of frequency and wavelength. Pada 1923 Prince Louis de Broglie mengajukan postulat bahwa materi dapat bersifat seperti gelombang, dengan panjang gelomabng λ yang besarnya dappat ditentukan dengan persamaan: Relasi de Broglie konstanta Planck’s panjang gelombang de Broglie Catatan; panjang gelombang bergantung ppada momentum, tidak pada ukuran fisis partikel Prediksi: Kita harus harus melihat diff dan interff dr gelombang materi.

Estimate some de Broglie wavelengths Wavelength of electron with 50eV kinetic energy Wavelength of Nitrogen molecule at room temperature Wavelength of Rubidium(87) atom at 50nK

ELECTRON DIFFRACTION The Davisson-Germer experiment (1927) G.P. Thomson The Davisson-Germer experiment: scattering a beam of electrons from a Ni crystal. Davisson got the 1937 Nobel prize. θi θi At fixed angle, find sharp peaks in intensity as a function of electron energy Davisson, C. J., "Are Electrons Waves?," Franklin Institute Journal 205, 597 (1928) At fixed accelerating voltage (fixed electron energy) find a pattern of sharp reflected beams from the crystal G.P. Thomson performed similar interference experiments with thin-film samples

ELECTRON DIFFRACTION (cont) Interpretation: similar to Bragg scattering of X-rays from crystals θi Path difference: θr Constructive interference when a Electron scattering dominated by surface layers Note difference from usual “Bragg’s Law” geometry: the identical scattering planes are oriented perpendicular to the surface Note θi and θr not necessarily equal

THE DOUBLE-SLIT EXPERIMENT Originally performed by Young (1801) to demonstrate the wave-nature of light. Has now been done with electrons, neutrons, He atoms among others. Alternative method of detection: scan a detector across the plane and record number of arrivals at each point y d θ Incoming coherent beam of particles (or light) Detecting screen D For particles we expect two peaks, for waves an interference pattern

EXPERIMENTAL RESULTS Neutrons, A Zeilinger et al. 1988 Reviews of Modern Physics 60 1067-1073 He atoms: O Carnal and J Mlynek 1991 Physical Review Letters 66 2689-2692 C60 molecules: M Arndt et al. 1999 Nature 401 680-682 With multiple-slit grating Without grating Fringe visibility decreases as molecules are heated. L. Hackermüller et al. 2004 Nature 427 711-714 Interference patterns can not be explained classically - clear demonstration of matter waves

DOUBLE-SLIT EXPERIMENT WITH HELIUM ATOMS (Carnal & Mlynek, 1991,Phys.Rev.Lett.,66,p2689) Path difference: Constructive interference: Separation between maxima: y (proof following) Experiment: He atoms at 83K, with d=8μm and D=64cm d θ Measured separation: Predicted de Broglie wavelength: D Predicted separation: Good agreement with experiment

DOUBLE-SLIT EXPERIMENT FRINGE SPACING IN DOUBLE-SLIT EXPERIMENT Maxima when: Because of D >>> d so use small angle approximation y d θ Position on screen: So separation between adjacent maxima: D

DOUBLE-SLIT EXPERIMENT INTERPRETATION The flux of particles arriving at the slits can be reduced so that only one particle arrives at a time. Interference fringes are still observed! Wave-behaviour can be shown by a single atom. Each particle goes through both slits at once. A matter wave can interfere with itself. Hence matter-waves are distinct from H2O molecules collectively giving rise to water waves. Wavelength of matter wave unconnected to any internal size of particle. Instead it is determined by the momentum. If we try to find out which slit the particle goes through the interference pattern vanishes! We cannot see the wave/particle nature at the same time. If we know which path the particle takes, we lose the fringes . The importance of the two-slit experiment has been memorably summarized by Richard Feynman: “…a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics. In reality it contains the only mystery.”

DOUBLE-SLIT EXPERIMENT BIBLIOGRAPHY Some key papers in the development of the double-slit experiment during the 20th century: Performed with a light source so faint that only one photon exists in the apparatus at any one time G I Taylor 1909 Proceedings of the Cambridge Philosophical Society 15 114-115 Performed with electrons C Jönsson 1961 Zeitschrift für Physik 161 454-474, (translated 1974 American Journal of Physics 42 4-11) Performed with single electrons A Tonomura et al. 1989 American Journal of Physics 57 117-120 Performed with neutrons A Zeilinger et al. 1988 Reviews of Modern Physics 60 1067-1073 Performed with He atoms O Carnal and J Mlynek 1991 Physical Review Letters 66 2689-2692 Performed with C60 molecules M Arndt et al. 1999 Nature 401 680-682 Performed with C70 molecules showing reduction in fringe visibility as temperature rises and the molecules “give away” their position by emitting photons L. Hackermüller et al 2004 Nature 427 711-714 Performed with Na Bose-Einstein Condensates M R Andrews et al. 1997 Science 275 637-641 An excellent summary is available in Physics World (September 2002 issue, page 15) and at http://physicsweb.org/ (readers voted the double-slit experiment “the most beautiful in physics”).

HEISENBERG MICROSCOPE AND THE UNCERTAINTY PRINCIPLE (also called the Bohr microscope, but the thought experiment is mainly due to Heisenberg). The microscope is an imaginary device to measure the position (y) and momentum (p) of a particle. Heisenberg θ/2 Light source, wavelength λ Particle Lens, with angular diameter θ Resolving power of lens:

HEISENBERG MICROSCOPE (cont) Photons transfer momentum to the particle when they scatter. Magnitude of p is the same before and after the collision. Why? θ/2 p Uncertainty in photon y-momentum = Uncertainty in particle y-momentum Small angle approximation de Broglie relation gives and so From before hence HEISENBERG UNCERTAINTY PRINCIPLE.

HEISENBERG UNCERTAINTY PRINCIPLE We will show formally (section 4) HEISENBERG UNCERTAINTY PRINCIPLE. We cannot have simultaneous knowledge of ‘conjugate’ variables such as position and momenta. Note, however, etc Arbitary precision is possible in principle for position in one direction and momentum in another

HEISENBERG UNCERTAINTY PRINCIPLE There is also an energy-time uncertainty relation Transitions between energy levels of atoms are not perfectly sharp in frequency. n = 3 n = 2 n = 1 An electron in n = 3 will spontaneously decay to a lower level after a lifetime of order Intensity Frequency There is a corresponding ‘spread’ in the emitted frequency

CONCLUSIONS Light and matter exhibit wave-particle duality Relation between wave and particle properties given by the de Broglie relations , Evidence for particle properties of light Photoelectric effect, Compton scattering Evidence for wave properties of matter Electron diffraction, interference of matter waves (electrons, neutrons, He atoms, C60 molecules) Heisenberg uncertainty principle limits simultaneous knowledge of conjugate variables