Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehDoddy Hartono Telah diubah "8 tahun yang lalu
1
Presented By: Hadrian Eddy (0606068234) Tiara Anggraini (0606068764) Yonas Ariyanto (0606068801)
2
Metode Elektromagnetik merupakan salah satu jenis metode dalam ekplorasi geofisika yang memanfaatkan prinsip hukum Maxwell dimana perubahan medan magnet menghasilkan medan listrik dan sebaliknya (hukum elektromagnetik) Parameter yang diukur dalam metode EM adalah E (Medan Listrik) dan H (Medan Magnet) Paramater yang dianalis (dicari) adalah variasi resistivity (ρ) Metode ini sangat efektif digunakan pada medium yang konduktif.
3
Geological Features: Mineral Deposit Geothermal Source Oil & Gas Reservoirs ApplicationDepth Range (m) Range (ohm-meter) Freq. Range (Hz) Ground Water Mineral Geothermal Oil/Gas Deep Crust/U.M. 10-100 10-2000 100-100000 1000-300000 1-100 0.1-1000 0.1-100000 0.1-10000 0.01-100 0.001-10 0.0001-10
4
EARTH EM field Resistivity Structure Geological Stucture Parameter: Resistivity
5
1. MT (Magnetotelluric) Method 2. CSAMT (Control Source Audio Magnetotelluric) Method 3. TDEM (Time-Domain Electromagnetic) Method
6
Frekuensi dari sinyal MT berkisar antara 10-4 hingga 10 Hz Sumber gelombang EM berasal dari matahari dan petir Dapat memetakan hingga kedalaman 5 km
7
E-channel H-channel
8
Sumber Gelombang EM buatan (sumber frekuensi transimitter gelombang Audio magnetotelluric) Frekuensi dari sinyal CSAMT >100 Hz Penetrasi kedalamannya dangkal Dapat mengurangi noise yang didapat selama pengukuran (frekuensi dari noise dapat di filter
9
arus diinjeksikan pada loop luar, signal yang didapat dari inner loop akibat induksi arus oleh medan magnet Kedalaman lebih dangkal dari metode MT
10
Investigasi fracture (zona rekahan) dan rongga bawah tanah akibat erosi air - Target kedalaman :800 m -Untuk memetakan zona patahan dan rongga bawah tanah -Spasi transmitter-reciever: 9.2 km -Spasi antar transmitter (AB): 2.6 km -receiver 16 chanels -Frekuensi yang digunakan 2^0 hingga 2^13 -Lokasi pengukuran Enshi City provinsi Hubei, China -Survey dilakukan untuk memberikan informasi dalam pembangunan railway
12
Gambar I: Kontur resistivity untuk crosssection stations antara 17500- 18900 cave fault
13
Gambar 2: kontur resistivty untuk crosssection stations 19500~21400 cave fault cave
14
Gambar 3: kontur resistivty untuk crosssection stations 27000~28500 fault cave
15
- Metode CSAMT sounding sangat efektif untuk memetakan struktur geologi bawah permukaan - Metode CSAMT juga efektif untuk mengidentifikasi keberadaan formasi aquifer. - Dari survey CSAMT ini sangat membantu dalam memberikan informasi penempatan design terowongan dan untuk konstruksi -
17
Electromagnetic experiments were conducted in 1995 as part of a multidisciplinary research project to investigate the deep structure of the Chyulu Hills volcanic chain on the eastern flank of the Kenya Rift in East Africa. TEM and MT technique soundings were made at eight stations along a seismic survey line and the data were processed using standard techniques.
18
The Kenya Rift is characterised by extensive volcanic activity and is one of the most intensively studied magmatic continental rifts The Chyulu Hills volcanic field in southern Kenya is one of such fields. It is an area of high magmatic activity and is situated 150 km east of the southern part of the rift, about 40 km northeast of Mt. Kilimanjaro.
19
Based on these geological and geothermobarometric considerations, it is to be expected that there will be differences in the physical state of the crust in the northern and southern parts of the Chyulu Hills volcanic field.
20
Novak et al. (1997a) shows a 9–11-km-thick upper crust, a < 10-km-thick middle crust, and up to 25-km-thick lower crust with no major lateral variations over a distance of 275 km along the profile.
24
A resistivity model derived by 2-D inversion with a structured initial model. The numbers at the top of the section are the distances in km along the coincidentally located seismic line of Novak et al. (1997a). ChNLukSelChWCh2ChSWyaMwa
25
The TEM data provided effective correction for static shifts in MT data. The MT data were inverted for the structure in the upper 20 km of the crust using a 2-D inversion scheme and a variety of starting models. The resulting 2-D models show interesting features but the wide spacing between the MT stations limited model resolution to a large extent. These models suggest that there are significant differences in the physical state of the crust between the northern and southern parts of the Chyulu Hills volcanic field. North of the Chyulu Hills, the resistivity structure consists of a: 10–12-km-thick resistive (up to 4000 Ω.m) upper crustal layer, ca. 10-km-thick mid-crustal layer of moderate resistivity (50 Ω.m), and a conductive substratum. The resistive upper crustal unit is considerably thinner over the main ridge (where it is ca. 2 km thick) and further south (where it may be up to 5 km thick).
26
The low-resistivity anomalies are interpreted as possible magmatic features and may be related to the low-velocity zones recently detected at greater depth in the same geographic locations. The MT results, thus, provide a necessary upper crustal constraint on the anomalous zone in Chyulu Hills, MT provided a logical compliment to seismics for the exploration of the deep crust in this volcanic-covered basement terrain.
27
Investigation of fractures and water-eroded caves using CSAMT method, Haming Gu*, China University of Geosciences. Magnetotelluric images of the crustal structure of Chyulu Hills volcanic f ield. Kenya. V. Sakkas a, M.A. Meju a, M.A. Khan a, V. Haak b, F. Simpson c.
28
Thanks for the appreciation
Presentasi serupa
© 2025 SlidePlayer.info Inc.
All rights reserved.