Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehTeguh Setiawan Telah diubah "7 tahun yang lalu
1
K O N S E P D A S A R A N A L I S I S R E G R E S I
Dosen Pengampu M.K. Ekonometrika UIGM: Dr. SUHEL, M.Si. Dr. Hj. Siti K. Hildayanti, M.M.
2
MASALAH ESTIMASI Estimate Koefisien bi , ada 2 cara, yaitu: 1. Cara persamaan sederhana (satu persamaan) 2. Cara persamaan simultan
3
2. Cara persamaan simultan
Cara persamaan sederhana (satu persamaan) OLS (Ordinary Least Square) Reduced Form TSLS (Two Stage Least Square) 2. Cara persamaan simultan Dalam banyak variabel ekonomi tidak hanya berhubungan satu arah. Dalam bahasa ekonometrika satu variabel independen (X1), mempengaruhi variabel dependen (Y) dan selanjutnya variabel Y itu sendiri mempengaruhi X1. Sedangkan pendapatan ditulis Fungsi Konsumsi dapat ditulis Y = C + I
4
Evaluasi Estimate 1. Sesuai dengan teori 2. Secara statistik baik
Kriteria: Apriori ekonomi teori ekonomi b. Statistik teori statistik c. Ekonometrika teori ekonometrika I D E N T K
5
SIFAT-SIFAT: Memenuhi syarat teori
Model bisa menjelaskan keadaan yang sebenarnya Estimate parameter yang baik Kemampuan untuk forecast Sederhana: prinsip parsimony yaitu menggunakan variabel sekecil mungkin, tetapi mendapat informasi sebanyak-banyaknya.
6
Estimate Parameter yang Baik
Unbiased; Efisien (varians minimum); Konsisten
7
= rata-rata populasi,
bi i , rata-rata (bi) = 1. Varians (X) < Varians () maka efisien. Jika n makin besar maka X menuju . = rata-rata populasi, X = rata-rata sampel X = Rata-rata populasi
8
Regresi, Kausalitas dan Korelasi
Regresi merupakan metode estimasi utama dalam ekonometrika. Analisis regresi berkenaan dengan studi ketergantungan satu variabel, variabel tak bebas pada satu atau lebih variabel lain. Variabel yang menjelaskan (explanatory variables) dengan maksud menaksir dan atau meramalkan nilai rata-rata hitung (mean) atau rata-rata populasi variabel tak bebas, dipandang dari segi nilai yang diketahui atau tetap (dalam pengambilan sampel berulang).
9
Regresi berbeda dengan Kausalitas
Regresi menunjukkan hubungan satu arah dari variabel independen ke variabel dependen. Sedangkan kausalitas menunjukkan hubungan dua arah. Misalnya hubungan antara pertumbuhan ekonomi dan jumlah uang beredar. Jika pertumbuhan ekonomi tinggi maka jumlah uang beredar cenderung untuk naik. Sebaliknya jika jumlah uang yang beredar naik maka akan mendorong pertumbuhan ekonomi. Dengan demikian hubungan kausalitas semua variabel adalah variabel dependen, tidak ada variabel independen.
10
Regresi berbeda dengan Korelasi
Korelasi menunjukkan derajat keeratan hubungan antara satu variabel dengan variabel lainnya. Korelasi yang tinggi tidak berarti karena satu variabel mempengaruhi variabel yang lain. Analisis korelasi tujuan utamanya adalah untuk mengukur kuat atau derajat hubungan linear antara dua variabel, sangat erat berhubungan tetapi sangat berbeda dalam konsep analisis regresi.
11
PERBEDAAN REGRESI KORELASI
1. Ada Asimetri (asymmetry) cara bagaimana variabel tak bebas dan variabel yg menjelaskan diperlukan 1. Variabel manapun simetri, tidak ada perbedaan variabel antara variabel bebas dan yang menjelaskan 2. Variabel tak bebas diasumsikan bersifat statistik, random atau stokhastik, yaitu mempunyai distribusi probabilitas 2. Korelasi antara nilai ujian statistik dan matematik adalah sama dengan korelasi nilai ujian matematik dan statistik 3. Variabel yg menjelaskan diasumsikan memp. nilai tetap, variabel tak bebas stokhastik 3. Kedua variabel diasumsikan kerandomannya
12
Istilah dan Notasi Variabel tak Bebas (Dependent Variable)
Variabel yang Menjelaskan (Explanatory Variable) Variabel yang dijelaskan (Explained Variable) Variabel Bebas (Independent Variable) Yang diramalkan (Predictand) Peramal (Predictor) Yang diregresi (Regressand) Yang meregresi (Regressor) Tanggapan (Response) Perangsang atau Variabel kendali (Stimulus or control variable)
13
Statistika untuk Ekonometrika
Pemahaman ekonometrika sangat tergantung dari pemahaman kita tentang ilmu statistik. Dalam mempelajari ekonometrika diasumsikan sudah belajar statistik lebih dulu. Sifat-sifat Distribusi Probabilitas Ada beberapa sifat penting dari distribusi probabilitas, yaitu: Rata-rata atau Nilai Harapan (Expected Value) Jika : X1, X2, X3 , Xn Probabilitas p(X1), p(X2), p(X3), p(Xn), Maka rata-rata (X) = X1 p(X1) + X2 p(X2) + X3 p(X3) + Xn p(Xn) = ∑ Xip(Xi) (Y) = ∑ Yi p(Yi)
14
Beberapa Sifat dari Expected Value
1. (b) = b 2. (ax +b) = a (x) + b 3. x, y independent maka (x,y ) = (x) E (y) 4. Var b = 0 5. Var (ax +b) = a2 var (x) + 0 6. x, y independent maka : a) var (x + y) = var (x) + var (y) b) var (ax + by) = a2 var (x) + b2 var (y) 7. x, y tidak independent maka: var (x + y) = var (x) + var (y) + 2 covarians (x, y) var (x – y) = var (x) + var (y) – 2 covarians (x, y)
15
Contoh Soal Expected Value
Jumlah Y - 2 2 3 54 16 32 102 6 8 20 70 98 24 52 200 X = SKOR UJIAN A Y = SKOR UJIAN B
16
Probabilitas tiap Bilangan dibagi 200
X P (Y) Y - 2 2 3 0,27 0,08 0,16 0,51 Joint Probabilitas 6 0,04 0,10 0,35 0,49 P (X) 0,12 0,26 1,00 Hitunglah: 1. Besarnya rata-rata (X) dan (Y) 2. Varians Var (X) dan Var (Y) 3. Co Varians (X,Y)
17
Jawab: 1. E(X) = ∑X p(X) = - 2 (0,27) + 0 + 2 (0,26) + 3 (0,35)
= - 0,54 + 0,52 + 1,05 = 1,03 E(Y) = ∑Y p(Y) = 3 (0,51) + 6 (0,49) = 1,53 + 2,94 = 4,47 2. Varians Var (X) = = Var (X) = = 4(0,27) (0,26) + 9(0,35) - (1,03)2 = 1,08 + 1,04 + 3,15 – 1,0609 = 4,2091 = 4,21
18
= (-2) (3) (0,27) + 0 + (2) (3) (0,16) +0 + (-2)
Varians Var (Y) = = = 9 (0,51) + 36 (0,49) - (4,47)2 = 2,25 3. Co Varians (X,Y) = E (X – E(X)) (Y – E (Y)) = E (XY) – E(X) E(Y) = (-2) (3) (0,27) (2) (3) (0,16) +0 + (-2) (6) (0) (6) (0,10) + 3 (6) (0,35) – (1,03) (4,47) = 2,24
19
Conditional Probabilitas
Misalnya, untuk X = 2, Berapakah E (Y/X = 2) Jawab: E (Y/X = 2) = ∑Y. P(Y/X=2) = = 1, ,307692 = 4,1538 = 4,15 Berapakah Var (Y/X= 2) ? Jawab: Var (Y/X= 2) = E (Y- E (Y/X))2 = ∑(Y – E (Y/X = 2))2 p (Y/X = 2) = = 2,13 Berapakah E (X/Y = 3)? dan Var (X/Y = 3) ?
20
Soal Latihan Rata-rata (Expected Value)
1. Hasil penjualan barang X (dalam unit) selama beberapa hari, mempunyai probabilitas sebagai berikut: Penjualan (X) unit Probabilitas P(X) 5 0,08 8 0,27 10 0,02 14 0,15 19 0,19 20 0,25 25 0,04 Berdasarkan tabel di samping, hitunglah: Rata-rata barang X atau E (X) setiap hari. Varians (X) Standar deviasinya
21
Berdasarkan tabel disamping a. buatlah tabel joint probabilitas.
2. Tabel berikut ini adalah X yang memberikan ukuran Bbb, Bb, dan B serta besarnya pinjaman Y dapat terlihat sbb: X Y 1 Bbb 2 Bb 3 B Total 8 13 5 18 11 14 17 15 20 50 Berdasarkan tabel disamping a. buatlah tabel joint probabilitas. b. Hitunglah: P (Y/X = 1), P (Y/X = 2), P(Y/X = 3). c. Hitunglah Covarians (X,Y) Hitunglah conditional probabilitas E(Y/X = 1), E(Y/X = 2), dan E(Y/X = 3).
22
Hitunglah E (X) dan Var (X) Hitunglah E (Y) dan Var (Y)
3. Hasil penjualan barang X dan barang Y selama beberapa hari, mempunyai probabilitas sebagai berikut: Barang Y Barang X 2 0,07 0,02 0,10 0,05 0,01 4 0,15 0,06 0,03 6 0,09 Hitunglah E (X) dan Var (X) Hitunglah E (Y) dan Var (Y) Untuk X = 6, hitunglah E(Y/X =6) dan Var (Y/X =6) Untuk Y = 4, hitunglah E (X/Y=4) dan Var (X/Y = 4)
23
4. Hasil Penjualan barang X dan Y selama 285 hari tercatat sebagai berikut.
20 10 25 6 9 18 30 28 36 40 21 32 15 7 12 8 Hitunglah besarnya: E(X) dan Var (X) E(Y) dan Var (Y) E(Y/X = 20) dan Var (Y/X= 20)
24
Model Regresi Sederhana
Yi = 0 + 1 Xi + i 0 dan 1 : parameter dari fungsi yg nilainya akan diestimasi. Bersifat stochastik untuk setiap nilai X terdapat suatu distribusi probabilitas seluruh nilai Y atau Nilai Y tidak dapat diprediksi secara pasti karena ada faktor stochastik i yang memberikan sifat acak pada Y. Adanya variabel i karena: Ketidak-lengkapan teori Perilaku manusia yang bersifat random Ketidak-sempurnaan spesifikasi model Kesalahan dalam agregasi Kesalahan dalam pengukuran
25
Asumsi-asumsi mengenai i:
Y . . . Ÿi = b0 + b1 Xi Yi i Yi = 0 + 1 Xi i Ÿi Variation in Y Systematic Variation Random Variation X Asumsi-asumsi mengenai i: 1. i adalah variabel random yg menyebar normal 2. Nilai rata-rata i = 0, e(i) = 0. 3. Tidak tdpt serial korelasi antar i cov(i,j) = 0 4. Sifat homoskedastistas, var(i) = 2 5. cov(i,Xi) = 0 6. Tidak terdapat bias dalam spesifikasi model 7. Tidak terdapat multi-collinearity antar variebel penjelas
26
Fungsi Regresi Populasi
Y E(Yi) = 0 + 1 Xi Yi = 0 + 1 Xi + i Nilai rata2 Yi : E(Yi) = 0 + 1 Xi I = Yi - E(Yi) X X1 X2 X3
27
METODE PENAKSIRAN PARAMETER DALAM EKONOMETRIK
Metode estimasi yang sering digunakan adalah Ordinary Least Square (OLS). Dalam regresi populasi dikenal pula adanya istilah PRF (Population Regression Function) dan dalam regresi sampel sebagai penduga regresi populasi dikenal istilah SRF (Sample Regression Function). P SRF Y ei ui PRF Yi ^ Yi Xi X
28
Penaksir kuadrat terkecil adalah mempunyai varian yang minimum yaitu penaksir tadi bersifat BLUE (Best Linear Unbiased Estimator). Asumsi yang harus dipenuhi dalam penaksiran metode OLS adalah sebagai berikut : 1. i adalah sebuah variabel acak atau random yang riil dan memiliki distribusi normal. 2. Nilai harapan dari i yang timbul karena variasi nilai Xi yang diketahui harus sama dengan nol E(i/ Xi) = 0 3. Tidak terjadi autokorelasi atau serial korelasi. Artinya, Cov(i, j) = Ei – E(i) j – E(j) = E(i, j) = i j 4. Syarat Homoskedastisiti. Artinya bahwa varian dari i adalah konstan dan sama dengan 2. Var (i / Xi) = Ei – E(i)2 = E(i)2 = 2 5. Tidak terjadi multikolonieritas. Yaitu tidak ada korelasi antara dengan variabel bebasnya Xi atau : Cov(i , Xi) = E(i – E(i))(Xi – E(Xi)) = 0
29
REGRESI LINEAR SEDERHANA
Y = ß0 + ß1 X Pengujian statistik SECARA PARSIAL mendasarkan pada hipotesis : Uji Konstanta Intersep H0 : ß0 = 0 H1 : ß0 ≠ 0 Uji Koeff. X H0 : ß1 = 0 H1 : ß1 ≠ 0 Pengujian statistik model secara keseluruhan dilakukan dengan uji-F. Uji F mendasarkan pada dua hipotesis, yaitu : H0 : Semua koefisien variabel bebas adalah 0 (nol) H1 : Tidak seperti tersebut di atas
30
Contoh : Sehingga dapat disajikan hasil sebagai berikut :
Konsumsi = *Income R2 = 0.962 S.E (6.414) (0.036) t-hitung = F hit = 202,868 Df = 8 Dalam pengertian ekonomi dapat dikatakan bahwa jika terdapat kenaikan income sebesar $ 1 per bulan maka akan mempengaruhi kenaikan pula pada konsumsi sebesar $ Demikian juga bila terjadi penurunan income sebesar $ 1 per bulan maka akan berdampak pada penurunan konsumsi sebesar $
31
Model Regresi Sederhana
Estimasi Parameter Model Regresi Sederhana Yi = 0 + 1 Xi + i Metode Kuadrat Terkecil (Ordinary Least Square – OLS): Prinsip: Meminimumkan nilai error – mencari jumlah penyimpangan kuadrat (i2) terkecil. i = Yi - 0 - 1 Xi i2 = (Yi - 0 - 1 Xi)2 i2 = (Yi - 0 - 1 Xi)2 i2 minimum jika: i2 /0 = 0 2 (Yi - 0 - 1 Xi) = 0 i2 /1 = 0 2 Xi (Yi - 0 - 1 Xi) = 0
32
s = (i2 /n-2)2 dan i2 = (Yi – Y)2
Sederhanakan, maka didapat: (Xi – X) (Yi – Y) b1 = (Xi – X)2 b0 = Y - b1X dimana b0 dan b1 nilai penduga untuk 0 dan 1. X dan Y adlh nilai rata2 pengamatan X dan Y Standar error: ½ SE(b1) = (Xi – X)2 Xi ½ SE(b0) = N (Xi – X)2 diduga dengan s, dimana: s = (i2 /n-2) dan i2 = (Yi – Y)2
33
Metode Ordinary Least Squares (OLS)
Yi = 1 + 2 Xi + i Yi = 1 + 2 Xi + i Ŷi = 1 + 2 Xi Yi = Ŷi + i i = Yi - Ŷi (1) (2) (3) (4) (5) Persamaan umum Regresi sederhana 1 dan 2 adalah nilai estimasi untuk parameter Ŷi = nilai estimasi model i = nilai residual n XiYi – Xi Yi 2 = n Xi2 – (Xi)2 (Xi – X)(Yi – Y) = (Xi – X)2 n xiyi xi2 (Xi )2 Yi – Xi XiYi 1 = n Xi2 – (Xi)2 = Y – 2X Koefisien parameter untuk 1 dan 2
34
Standard error of the estimates
Var(2) = 2 / Xi2 Se(2) = Var(2) = = Xi Xi2 Xi2 Var(1) = 2 n xi2 Se(1) = Var(1) = 2 i2 2 = i2 = yi2 – 22 xi2 n – 2 (xi yi) 2 = yi2 – xi2
35
Koefisien Determinasi
1 + 2 Xi Y • RSS TSS TSS = RSS + ESS ESS RSS 1 = TSS TSS (Ŷi - Y) i2 = (Yi - Y) (Yi - Y)2 ESS Y X ESS (Ŷi - Y)2 r2 = = TSS (Yi - Y)2 atau ESS i2 = 1 – = 1 – TSS (Yi - Y)2 Atau: xi2 r2 = 22 yi2 (xi yi) 2 = xi2 yi2
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.