Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
VARIABEL ACAK (RANDOM VARIABLES)
Fungsi yang dihubungkan dengan suatu percobaan, yang nilai-nilainya adalah bilangan nyata dan kemunculan nilai-nilai tersebut bergantung pada peluang. Variabel acak biasa dinotasikan dengan huruf besar bercetak tebal, misalnya: X, Y, Z, dsb.
2
DISTRIBUSI PELUANG SUATU VARIABEL ACAK DISKRIT
Himpunan pasangan terurut (x,f(x)) dikatakan suatu distribusi peluang/fungsi peluang dari suatu variabel acak diskrit X jika memenuhi 3 kriteria berikut: x f(x) 0 x P(X=x) = f(x) f(x) = 1 x
3
Banyaknya Mobil Terjual
CONTOH (1) Banyaknya Mobil Terjual Peluang 0,10 1 0,30 2 0,50 3 0,07 4 0,03
4
Banyaknya Pegawai yang Hadir
CONTOH (2) Banyaknya Pegawai yang Hadir Peluang 0,010 1 2 0,015 3 4 0,020 5 0,130 6 0,170 7 0,180 8 0,220 9 0,230
5
CONTOH (3) Misalkan 3 buah uang logam dilemparkan bersamaan dan variabel acak X menyatakan banyaknya sisi Angka yang muncul. X dapat bernilai 0, 1, 2, 3 P(X=0) = 1/8 P(X=1) = 3/8 P(X=2) = 3/8 P(X=3) = 1/8
6
MENENTUKAN FUNGSI PELUANG PADA CONTOH 3
S = {AAA, AAG, AGA, GAA, AGG, GGA, GAG, GGG} => |S| = 8 E0 = {GGG} => |E0| = 1 => P(E0) = 1/8 E1 = {AGG,GGA,GAG} => |E1| = 3 => P(E1) = 3/8 E2 = {AAG,AGA,GAA} => |E2| = 3 => P(E2) = 3/8 E3 = {AAA} => |E3| = 1 => P(E3) = 1/8
7
HISTOGRAM PELUANG CONTOH 3
8
RATA-RATA SUATU VARIABEL ACAK DISKRIT
Misalkan X adalah suatu variabel acak diskrit dengan fungsi peluang f(x). Yang dimaksud dengan rata-rata/mean atau nilai harapan dari X adalah: X = E(X) = xf(x) x
9
CONTOH SOAL MENGHITUNG RATA-RATA
Banyaknya mobil per hari bervariasi, dengan distribusi peluang berikut: P(X=0) = 0,1 P(X=1) = 0,15, P(X=2) = 0,20, P(X=3) = 0,25, P(X=4)=0,3, dengan X adalah banyaknya mobil yang dicuci per hari. Berapakah rata-rata banyaknya mobil yang dicuci per hari?
10
JAWABAN Rata-rata banyaknya mobil yang dicuci: E(X) = 0.0, , , , ,30 = 0+0,15+0,40+0,75+1,20=2,50. Rata-rata penghasilan per hari = 2,5 x Rp = Rp
11
MENENTUKAN RATA-RATA PADA CONTOH 3
E(X) = 0.1/ / / /8 = 1,5. Rata-rata banyaknya sisi Angka yang muncul pada pelemparan 3 buah uang logam secara bersamaan adalah 1,5.
12
Latihan 1 The Pizza Palace offers three sizes of cola – small, medium, and large - to go with its pizza. The colas are sold for $0.80, $0.90, and $1.20, respectively. Thirty percent of the orders are for small, 50% are for medium, and 20% are for the large sizes. Organize the size of the colas and the probability of a sale into a probability distribution. Compute the mean amount charged for a cola.
13
Latihan 2 The information below is the number of daily emergency service calls made by the volunteer ambulance service of Walterboro, South Carolina, for the last 50 days. Number of Calls Frequency 8 1 10 2 22 3 9 4 SUM 50 Convert this information on the number of calls to a probability distribution. What is the mean number of emergency calls per day?
14
RATA-RATA PENDAPATAN SUATU JENIS TARUHAN (A)
Pelemparan 3 uang logam bersamaan Bentuk taruhan: Apakah ketiga uang logam yang dilempar bersamaan menunjukkan sisi yang sama (Angka semua atau Gambar semua)? Kalau muncul Angka semua atau Gambar semua kita mendapatkan Rp Kalau ada sisi yang tidak sejenis kita membayar Rp Berapa rata-rata pendapatan dari taruhan tsb.?
15
VARIANSI DAN SIMPANGAN BAKU SUATU VARIABEL ACAK DISKRIT
Misalkan X suatu variabel acak diskrit dengan fungsi peluang f(x) dan rata-rata . Variansi dari X didefinisikan sebagai berikut: 2X = E[(X - )2] = (x - )2f(x) Akar positif dari variansi, X , disebut simpangan baku dari X.
16
TARUHAN B Bentuk taruhan: Sebuah uang logam dilemparkan satu kali. Apakah akan muncul sisi Angka atau sisi Gambar? Kalau muncul sisi Angka, kita mendapat Rp Kalau muncul sisi Gambar, kita membayar Rp
17
TARUHAN C Bentuk taruhan: Sepasang dadu dilemparkan satu kali. Apakah kedua buah dadu menunjukkan jumlah mata dadu yang sama? Kalau sama, kita mendapat Rp Kalau berbeda, kita membayar Rp
18
ANALISIS TARUHAN B Misalkan variabel acak X menyatakan hasil yang kita dapatkan. E(X) = 0,5.Rp ,5.(-Rp 60000) = 0 (taruhan yang adil) 2X = 0,5.(Rp )2+0,5.(-Rp )2 = (Rp 60000)2 X = Rp 60000
19
ANALISIS TARUHAN C Misalkan variabel acak X menyatakan hasil yang kita dapatkan. E(X) = 1/6Rp /6 (-Rp 12000) = 0 (taruhan yang adil) 2X =1/6(Rp )2+ 5/6 (-Rp )2 = 1/6(Rp 60000)2 + 1/30(Rp 60000)2 = 1/5(Rp 60000)2 X = Rp 26830
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.