Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

UNSUR RADIOAKTIF Oleh: M. Nurissalam, S.Si SMA Muhammadiyah I Metro

Presentasi serupa


Presentasi berjudul: "UNSUR RADIOAKTIF Oleh: M. Nurissalam, S.Si SMA Muhammadiyah I Metro"— Transcript presentasi:

1 UNSUR RADIOAKTIF Oleh: M. Nurissalam, S.Si SMA Muhammadiyah I Metro
Unsur Radioaktif adalah unsur yang dapat memancarkan radiasi secara spontan. Radiasi adalah sejenis sinar tetapi memiliki energi yang besar dan daya tembus yang tinggi. Radiasi yang dipancarkan zat radioaktif terdiri dari 3 jenis partikel: Sinar alfa 24 Sinar beta -1 0 Sinar gama 0 0 +

2 NOTASI DAN SIMBOL PARTIKEL INTI
Muatan Proton p atau H 1p1 atau 1H1 +1 Netron n 0n1 Elektron/ Sinar beta e atau  -1e0 atau -10 -1 Sinar alfa  atau He 24 atau 2He4 +2 Sinar gama 00

3 KESETABILAN INTI Mengapa atom bersifat radioaktif ?
Atom bersifat radioaktif karena intinya tidak stabil, sehingga mudah meluruh/pecah yang disertai pemancaran radiasi. Mengapa proton sebagai penyusun inti tidak saling tolak menolak/ dapat menyatu ? Proton (+) Netron (o)

4 Ada 3 Pendekatan tentang kesetabilan inti Atom
Pita kesetabilan. Diidentifikasi perbandingan n/p isotop-isotop yang terdapat di alam. Contoh Isotop 6C12 memiliki n=6 dan p= 6 maka n/p = 1 Isotop 11Na23 memiliki n= 12 dan p=11 maka n/p=12/11 = 1,09. Isotop 20Ca40 mempunyai n=20 dan p=20 maka n/p=1 Dari perhitungan diatas maka diperoleh diagram berikut yang disebut diagram pita kesetabilan.

5 2. Isotop dengan No atom lebih dari 82 semua radio aktif.
Catatan: Isotop yang stabil adalah isotop yang memiliki n/p berada pada pita kesetabilan. n/p isotop stabil 2. Isotop dengan No atom lebih dari 82 semua radio aktif. 3. Ada 3 kelompok isotop tidak stabil; a.Di atas pita kestabilan. b.Di bawah pita kestabilan c. Atom berat dengan No > 82 82

6 Kecenderungan mencapai kestabilan
Isotop di atas pita kesetabilan berarti kelebihan n dan kekurangan p. Maka akan mencapai kesetabilannya dengan cenderung mengubah n menjadi p Memancarkan sinar beta 0n1 1p1 + -1  0 2. Isotop di bawah pita kesetabilan berarti kelebihan p dan kekurangan n. Maka akan mencapai kesetabilannya dengan cenderung mengubah p menjadi n dengan dua cara: Cara I Memancarkan positron 1p1 0n1 + +1 e 0

7 Menangkap elektron dari kulit K
Cara II 1p1 -1e0 0n1 + Menangkap elektron dari kulit K Memancarkan sinar X e K L Cara yang kedua ini lebih sering terjadi, sedangkan cara I jarang sekali terjadi

8 3. Istop-isotop dengan No. atom lebih dari 82. (inti berat)
Cenderung meluruh dengan memancarkan sinar alfa () meskipun kadang disertai sinar beta () dan gama () 92U238 90Th234 24 + 90Th234 88Ra230 24 +

9 POLA PELURUHAN ZAT RADIOAKTIF
90Th234 91Pa234 92U234 90Th230 88Ra226 86Rn222 84Po218 82Pb214 83Bi214 84Po214 82Pb210 83Bi210 84Po210 82Pb206

10 2. Energi Bonding Menurut kajian ini kesetabilan inti atom disebabkan karena adanya energi bonding pernukleon yang cukup besar. Menurut konsep ini sebagian massa dari partikel inti diubah menjadi energi ikat antar nukleon (penyusun inti). Hal ini dapat dilihat dari selisih massa secara teori dan massa secara kenyataan, selisih massa tersebut kemudian diubah menjadi energi dengan konversi Einstein E = mc2 dan kemudian dibagi jumlah nukleonnya, sehingga akan diperoleh energi ikatan pernukleon.

11 BE = 9 x (p mass) + 10 x (n mass) – 19F mass
Nuclear binding energy (BE) is the energy required to break up a nucleus into its component protons and neutrons. BE + 19F p + 101n 9 1 E = mc2 BE = 9 x (p mass) + 10 x (n mass) – 19F mass BE (amu) = 9 x x – BE = amu 1 amu = 1.49 x J BE = 2.37 x 10-11J binding energy per nucleon = binding energy number of nucleons = 2.37 x J 19 nucleons = 1.25 x J 23.2

12 Nuclear binding energy per nucleon vs Mass number

13 Nuclear Transmutation
14N + 4a O + 1p 7 2 8 1 Cyclotron Particle Accelerator 27Al + 4a P + 1n 13 2 15 14N + 1p C + 4a 7 1 6 2 23.4

14 Balancing Nuclear Equations
Conserve mass number (A). The sum of protons plus neutrons in the products must equal the sum of protons plus neutrons in the reactants. 1n U 235 92 + Cs 138 55 Rb 96 37 + 2 = x1 Conserve atomic number (Z) or nuclear charge. The sum of nuclear charges in the products must equal the sum of nuclear charges in the reactants. 1n U 235 92 + Cs 138 55 Rb 96 37 + 2 = x0 23.1

15 WAKTU PARUH ( t½ ) Waktu yang diperlukan untuk meluruhkan separuh dari jumlah inti suatu isotop. Waktu paruh bersifat spesifik untuk setiap isotop Contoh : t½ C = th t½ Po-214 = 1,6 x 10-4 detik t½ Bi-210 = 5 hari t½ Pb-214 = 26,8 menit Semakin besar (panjang) waktu paruhnya berarti proses peluruhannya berlangsung lambat (Isotop kurang aktif) Semakin pendek waktu paruhnya berarti peluruhannya berlangsung cepat (Isotop sangat aktif)

16 HUBUNGAN t½ DENGAN SISA ISOTOP
100 % 1 x Waktu paruh 50% 2 x Waktu paruh 3 x Waktu paruh 25% 4 x Waktu paruh 12,5% 6,25% 20 40 60 80 100 120 Waktu ( t )

17 Periode Waktu paruh: t / t½
HUBUNGAN t½ DENGAN SISA ISOTOP Periode Waktu paruh: t / t½ Sisa Isotop Nt Rumus 100% = bagian (½)0 bagian 1 50% = ½ bagian (½)1 bagian 2 25 % = ¼ bagian (½)2 bagian 3 12,5% = 1/8 bagian (½)3 bagian 4 6,25% = 1/16 bagian (½)4 bagian - n Maka sisa isotop ( Nt ) (½)n bagian Maka jumlah isotop yang tersisa; Nt = ( ½ )n .No

18 Contoh soal: Suatu isotop setelah disimpan selama 20 hari ternyata masih tersisa = 1/16 bagian. Tentukanlah waktu paruh isotop tersebut ! Jawab: Diketahui : No = 1 bagian Nt = 1/16 bagian Nt No = ( ½ )n 1/16 = ( ½ )n = ( ½ )4 Maka n = 4 t t½ n = Maka t½ = 20 4 = 5 hari

19 Contoh soal: 2. Suatu isotop setelah disimpan selama 60 hari ternyata masih tersisa = 12,5 %. Tentukanlah waktu paruh isotop tersebut ! Jawab: Diketahui : No = 100% Nt = 12,5 % Nt No = ( ½ )n 12,5/100 = ( ½ )n 1/8 = ( ½ )3 Maka n = 3 t t½ n = Maka t½ = 60 3 = 20 hari

20 PENENTUAN USIA FOSIL Pada mahluk hidup kadar C-14 yang ada dalam tubuh adalah konstan. Hal ini karena pada mahluk hidup masih melakukan aktivitas kehidupannya Pada mahluk yang sudah mati kadar C-14 yang ada dalam tubuh adalah berkurang. Hal ini karena pada mahluk mati tidak melakukan aktivitas kehidupannya Usia suatu fosil dapat ditentukan berdasarkan aktivitas isotop C-14 yang terkandung dalam fosil ( sebagai Nt ) dibandingkan dengan aktivitas C-14 yang terkandung dalam jasad masih hidup ( sebagai No )

21 Contoh soal: 3. Telah ditemukan fosil manusia purba di Desa Sangiran, Setelah diidentifikasi aktivitas C-14 nya ternyata memiliki aktivitas 5,1 dps. Jika pada tulang yang masih hidup memiliki aktivitas C-14 =15,3 dps dan t ½ C-14 =5700 th. Tentukan usia fosil manusia purba tersebut. Jawab: Diketahui : No = 15,3 dps Nt = 5,1 dps Nt No = ( ½ )n 5,1/15,3 = ( ½ )n ⅓ = ( ½ )n log ⅓ = log ( ½ )n log ⅓ = n log ½ Hitung n ?

22 Cyclotron Particle Accelerator
REAKSI INTI Transmutasi inti. Pada transmutasi inti inti atom ditembaki dengan partikel (proton, netron, alfa atau partikel lain.) Cyclotron Particle Accelerator

23 Nuclear Transmutation

24 Nuclear Fission Pembelahan Inti 235U + 1n 90Sr + 143Xe + 31n + Energy
92 54 38 Energy = [mass 235U + mass n – (mass 90Sr + mass 143Xe + 3 x mass n )] x c2 Energy = 3.3 x 10-11J per 235U = 2.0 x 1013 J per mole 235U Combustion of 1 ton of coal = 5 x 107 J

25 Nuclear Fission Nuclear chain reaction is a self-sustaining sequence of nuclear fission reactions. The minimum mass of fissionable material required to generate a self-sustaining nuclear chain reaction is the critical mass. Non-critical Critical 23.5

26 Schematic Diagram of a Nuclear Reactor
23.5

27 Chemistry In Action: Nature’s Own Fission Reactor
Natural Uranium % U % U-238 Measured at Oklo % U-235 Chemistry In Action: Nature’s Own Fission Reactor

28 Tokamak magnetic plasma confinement
Nuclear Fusion Fusion Reaction Energy Released 2H + 2H H + 1H 1 6.3 x J 2H + 3H He + 1n 1 2 2.8 x J 3.6 x J 6Li + 2H He 3 1 2 Tokamak magnetic plasma confinement 23.6

29

30 Radioisotopes in Medicine
1 out of every 3 hospital patients will undergo a nuclear medicine procedure 24Na, t½ = 14.8 hr, b emitter, blood-flow tracer 131I, t½ = 14.8 hr, b emitter, thyroid gland activity 123I, t½ = 13.3 hr, g-ray emitter, brain imaging 18F, t½ = 1.8 hr, b+ emitter, positron emission tomography 99mTc, t½ = 6 hr, g-ray emitter, imaging agent Brain images with 123I-labeled compound 23.7

31 Radioisotopes in Medicine
Research production of 99Mo 98Mo + 1n Mo 42 Commercial production of 99Mo 235U + 1n Mo + other fission products 92 42 Bone Scan with 99mTc 99Mo mTc + 0b + n 42 43 -1 t½ = 66 hours 99mTc Tc + g-ray 43 t½ = 6 hours 23.7

32 Pakai oksigen berlabel
Pakai glukosa berlabel

33

34

35 Geiger-Müller Counter
23.7

36 Biological Effects of Radiation
Radiation absorbed dose (rad) 1 rad = 1 x 10-5 J/g of material Roentgen equivalent for man (rem) 1 rem = 1 rad x Q Quality Factor g-ray = 1 b = 1 a = 20 23.8

37 Chemistry In Action: Food Irradiation
Dosage Effect Up to 100 kilorad Inhibits sprouting of potatoes, onions, garlics. Inactivates trichinae in pork. Kills or prevents insects from reproducing in grains, fruits, and vegetables. 100 – 1000 kilorads Delays spoilage of meat poultry and fish. Reduces salmonella. Extends shelf life of some fruit. 1000 to 10,000 kilorads Sterilizes meat, poultry and fish. Kills insects and microorganisms in spices and seasoning.


Download ppt "UNSUR RADIOAKTIF Oleh: M. Nurissalam, S.Si SMA Muhammadiyah I Metro"

Presentasi serupa


Iklan oleh Google