Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
Pertemuan 23 Diferensial Parsial
2
Tujuan Mahasiswa dapat menggunakan Diferensial parsial untuk mencari niali ekstrim suatu fungsi
3
Nilai Ekstrim Nilai ekstrim dari sebuah fungsi yg mengandung lebih dari satu variabel bebas dpt dicari dgn pengujian sampai derivatif kedua-nya. Untuk y =f(x,z), mk y mencapai ekstrim jika y/x = 0 dan y/z = 0, sedang utk menentukan maks & min adalah : maks , bila ²y/x² < 0 & ²y/z² < 0 min, bila ²y/x² > 0 & ²y/z² > 0
4
Nilai Ekstrim(2) 2y/x2 = - 2 <0 dan 2y/z2 = - 2 <0
Contoh : Selidiki jenis ekstrim dari fungsi y = -x² + 12x - z² + 10z – 45 ? y/x=-2x ; y/z =-2z +10 -2x+12=0 x=6 -2z+10=0 z=5 y = -(6)²+12(6)-(5)²+10(5)-45 = 16 2y/x2 = - 2 <0 dan 2y/z2 = - 2 <0 Maka ttk ekstrim maksimum, ymaks = 16
5
Optimisasi Bersyarat Suatu optimisasi dimana fungsi yang hendak dioptimumkan menghadapi suatu kendala (constraint). Perhitungan nilai ekstrim sebuah fungsi yg menghadapi kendala berupa sebuah fungsi lain, dapat diselesaikan dengan metoda : pengganda lagrange dan kuhn-tucker..
6
Pengganda Lagrange Mis fungsi yg dioptimumkan z=f(x,y) dan syarat yg dipenuhi u=g(x,y) , maka fungsi Lagrangenya : F(x,y, ) = f(x,y) + g(x,y), nilai ekstrim dpt dicari dgn memformulasikan masing2 derivatif parsial pertamanya sama dgn nol. Fx(x,y, ) = fx + gx = 0 Fy(x,y, ) = fy + gy = 0; =pengganda lagrange = var. tak tentu.
7
Contoh: Tentukan nilai ekstrim z dari fungsi z=2x+2y dgn syarat x² + y² = 8, & jenisnya?
F.Lagrange F = 2x + 2y + (x² + y² - 8) = 2x + 2y + x² + y² - 8 Agar F ekstrim, F’ = 0, Fx =2 + 2 x = 0 = -1/x ………… a) Fy =2 + 2 y = 0 = -1/y ………… b) x² + y² = 8 y² + y² = 8 y² =4 y = -2 & 2 Dan x = -2 & 2 Shg z =2x+2y = -8 & 8.
8
Penyelidikan nilai ekstrim:
Utk x=2 & y=2, =-1/2 Fxx = 2 = -1 <0 Fyy =2 = -1 <0 Maka ekstrim maksimum, dgn zmaks = 8 . Utk x=-2 & y=-2, =1/2 Fxx = 2 = 1>0 Fyy =2 = 1 >0 Maka ekstrim minimum, dgn zmin = -8 .
9
Metoda Kuhn-Tucker Adapun prosedurnya adalah : Z/x - (g/x) = 0
Z/y - (g/x) = 0 Uji :>0 berarti nilai x dan y yang mengoptimumkan persamaan berlaku juga untuk pertidaksamaan (binding). < 0, berarti fungsi kendala tidak mengikat ( non binding) = 0, maka lakukan pengujian terhadap nilai x dan y yang mengoptimumkan (tergantung tujuan apakah minimalisasi atau maximalisasi)
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.