Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
BAB 12 PROBABILITAS
2
Pengertian Probabilitas
Kata Probabilitas sering dipertukarkan dengan istilah lain seperti peluang dan kemungkinan. Secara umum probabilitas merupakan peluang bahwa sesuatu akan terjadi.
3
Probabilitas dinyatakan dengan bilangan desimal atau pecahan
Contoh : 0,50, 0,25, 0,70 Nilai probabilitas berkisar antara 0 dan 1
4
Semakin dekat nilai probabilitas ke nilai 0, semakin kecil kemungkinan suatu kejadian akan terjadi
Sebaliknya semakin dekat nilai probabilitas ke nilai 1, semakin besar peluang suatu kejadian akan terjadi.
5
Pendekatan Perhitungan Probabilitas
Bersifat Obyektif Bersifat Subyektif Pendekatan Klasik Pendekatan Frekuensi Relatif
6
Pendekatan Klasik Didasarkan pada asumsi bahwa seluruh hasil dari suatu eksperimen mempunyai kemungkinan (peluang) yang sama
8
S A A
9
Konsep Frekuensi Relatif
Pendekatan yang mutakhir ialah perhitungan yang didasarkan atas limit dari frekuensi relatif, besarnya nilai yang diambil oleh suatu variabel juga merupakan kejadian. Probabilitas suatu kejadian merupakan limit dari frekuensi relatif kejadian tersebut.
10
X f fr X1 f1 X2 f2 Xk fk Jumlah
11
Contoh 12.4 Tabel 12.1 X 55 65 75 85 95 105 115 f 8 10 16 14 5 2
12
Nilai Banyaknya mahasiswa (1) (2) < 25 10 25 – 50 30 50 – 75 45 75
Contoh 12.5 Tabel 12.2 Nilai Banyaknya mahasiswa (1) (2) < 25 10 25 – 50 30 50 – 75 45 75 15 Jumlah 100
14
Contoh 12.6 Tabel 12.3 f fr X1 8 0,8 60 0,6 450 0,45 5.490 0,549 52.490 0,5249 X2 2 0,2 40 0,4 550 0,55 4.510 0,451 47.510 0,4751 n 10 1,0 100 1000 1,00 10.000 1,000 1,0000 Untuk n = 10 P(X1) = 0,8 log 10 = 1 Untuk n = 100 P(X1) = 0,6 log 100 = 2 Untuk n = P(X1) = 0,45 log = 3 Untuk n = P(X1) = 0,549 log = 4 Untuk n = P(X1) = 0,5249 log = 5
16
Probabilitas Subyektif
Probabilitas Subyektif didasarkan atas penilaian seseorang dalam menyatakan tingkat kepercayaan. Jika tidak ada pengamatan masa lalu sebagai dasar, maka pernyataan probabilitas tersebut bersifat subyektif.
17
Kejadian / peristiwa dan notasi Himpunan
Eksperimen melempar mata uang logam Rp 50 sebanyak 2 kali Hasil eksperimen salah satu dari 4 kemungkinan Hasil yang berbeda dari suatu eksperimen disebut titik sampel Himpunan dari seluruh kemungkinan hasil disebut ruang sampel
18
Tabel 12.4 Ruang sampel untuk eksperimen
Pelemparan 2 dadu II 1 2 3 4 5 6 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66 I I = dadu pertama II = dadu kedua 23 = dadu pertama 2 dadu kedua 3
20
Ruang sampel suatu eksperimen mempunyai 2 syarat :
Dua hasil atau lebih tidak dapat terjadi secara bersamaan / saling meniadakan (mutually exclusive event) misalnya, melempar mata uang satu kali hasilnya atau tidak bisa 2. Harus terbagi habis (exhaustive). Artinya, ruang sampel harus memuat seluruh kemungkinan hasil, tidak ada yang terlewat. misalnya, jika melempar mata uang satu kali, maka ruang sampel (S) adalah
22
Mata uang logam Rp 50 dilempar sebanyak 3 kali
maka akan diperoleh ruang sampel 2 Kalau X = jumlah gambar burung ( B ) untuk 3 kali lemparan
23
X f fr 1 3 2
24
Tabel 12.6 Tabel 12.5 X fr 1 2 3 X f fr 1 3 2
25
Kalau kita melempar dadu sebanyak 2 kali (dapat juga 2 dadu
dilempar sekali) dan kalau X adalah jumlah mata dadu tersebut, maka : X = 2 terjadi 1 kali (11 = 1 dan 1) X = 3 terjadi 2 kali (21, 12) X = 4 terjadi 3 kali (31, 22, 13) X = 5 terjadi 4 kali (41, 32, 23, 14) X = 6 terjadi 5 kali (51, 42, 33, 24, 15) X = 7 terjadi 6 kali (61, 52, 43, 34, 25, 16) X = 8 terjadi 2 kali (62, 53, 44, 35, 26) X = 9 terjadi 2 kali (63, 54, 45, 36) X = 10 terjadi 2 kali (64, 55, 46) X = 11 terjadi 2 kali (65, 56) X = 12 terjadi 2 kali (66)
26
Tabel 12.7 X f 2 1 1/36 (=0,028) 3 2/36 (=0,056) 4 3/36 (=0,083) 5 4/36 (=0,111) 6 5/36 (=0,139) 7 6/36 (=0,167) 8 9 10 11 12 36 1 (=1,00)
28
Dimana 1 dan 2 merupakan himpunan bagian
29
Misalnya A = mendapatkan 1B (satu burung),
berarti A terdiri dari 2 elemen yaitu Kejadian yang terdiri dari satu elemen dalam Ruang Sampel S, disebut kejadian elementer (elementary event)
30
Probabilitas memiliki batas mulai 0 sampai dengan 1 ( 0 P(Si) 1 )
Jika P(Si) = 0, disebut probabilitas kemustahilan, artinya kejadian atau peristiwa tersebut tidak akan terjadi. Jika P(Si) = 1, disebut probabilitas kepastian, artinya kejadian atau peristiwa tersebut pasti terjadi. Jika 0 P(Si) 1, disebut probabilitas kemungkinan, artinya kejadian atau peristiwa tersebut dapat atau tidak dapat terjadi.
31
A. HIMPUNAN 1.Pengertian Himpunan.
Himpunan adalah kumpulan objek yang didefinisikan dengan jelas dan dapat dibeda-bedakan. Setiap objek yang secara kolektif membentuk himpunan, disebut elemen atau unsur atau anggota himpunan.
32
2.Penulisan Himpunan Dalam Statistik, himpunan dikenal sebagai populasi. Himpunan dilambangkan dengan pasangan kurung kurawal { }, dan dinyatakan dengan huruf besar: A, B,... Anggota himpunan ditulis dengan lambang , bukan anggota himpunan dengan lambang .
33
Himpunan dapat ditulis dengan 2 cara :
Cara Pendaftaran Diskrit Unsur himpunan ditulis satu persatu/didaftar Contoh : A={a,i,u,e,o} , B={1,2,3,4,5} Cara Pencirian Kontinyu Unsur himpunan ditulis dengan menyebutkan sifat-sifat / ciri-ciri himpunan tsb. Contoh : A={ X : x huruf hidup } B={ X : 1 x 5 }
34
3. Macam-macam Himpunan a.Himpunan Semesta
Himpunan yang memuat seluruh objek yang dibicarakan atau menjadi objek pembicaraan. Dilambangkan S atau U. Contoh : S=U={a,b,c,…..} S=U={ X : x bilangan asli}
35
b.Himpunan Kosong. Himpunan yang tidak memiliki anggota. Dilambangkan { } atau .
36
c.Himpunan Bagian. Himpunan yang menjadi bagian dari himpunan lain. Dilambangkan . Dalam statistik himpunan bagian merupakan sampel. Contoh : Himpunan A merupakan himpunan bagian B, jika setiap unsur A merupakan unsur B, atau A termuat dalam B, atau B memuat A. Dilambangkan : A B.
37
Diagram Venn Himpunan Bagian
2 3
38
Komplemen Kejadian / event terdiri antara lain :
1. Kejadian komplementer 2. Interseksi (perpotongan) 3. union (gabungan) Komplemen Himpunan komplemen adalah himpunan semua unsur yang tidak termasuk dalam himpunan yang diberikan. Jika himpunannya A maka himpunan komplemennya dilambangkan A’ atau
39
Peraga 12.4 Diagram Venn Komplemen S A A
40
Operasi Irisan (interseksi)
Irisan dari himpunan A dan B adalah himpunan semua unsur yang termasuk di dalam A dan di dalam B. Irisan dari himpunan A dan himpunan B dilambangkan A B.
41
Diagram Venn Operasi Irisan
Peraga 12.5
42
Rp milik A dan juga milik B AB =
43
5 10 A
44
Gabungan dari himpunan A dan himpunan B dilambangkan A B.
Gabungan (Union) dua kejadian Gabungan himpunan A dan himpunan B adalah semua unsur yang termasuk di dalam A atau di dalam B. Gabungan dari himpunan A dan himpunan B dilambangkan A B. A B ={X:x A, x B, atau x AB }
45
Diagram Venn Operasi Gabungan
Peraga 12.6
46
A = B = 2 3 4 5 6 7 8 9 10 11 12
47
Peraga 12.7 S K A
48
Peraga 12.8 S K A
49
Beberapa aturan dasar probabilitas
Secara umum ada 2 aturan : - aturan penjumlahan - aturan perkalian Aturan Penjumlahan Kejadian Saling Meniadakan. ( Mutually exclusive event) Dua peristiwa atau lebih disebut peristiwa saling lepas jika kedua atau lebih peristiwa itu tidak dapat terjadi pada saat yang bersamaan.
50
Jika peristiwa A dan B saling lepas, probabilitas terjadinya peristiwa tersebut adalah :
P (A atau B) = P (A) + P (B) atau P ( A B) = P (A) + P (B) Untuk 3 kejadian saling meniadakan P ( A B C) = P (A) + P (B) + P (C)
51
Contoh 12.7 : Tabel 12.8 Berat Kejadian Jumlah padat Probabilitas
Lebih ringan A 100 Standar B 3600 Lebih berat C 300 Jumlah 4000 1,000 P (A atau C) = P ( A C) = P (A) + P (C) = 0, ,075 = 0,10
52
Peraga 12.9 Diagram Venn A B C
53
S1 S2 Sk N1 N2 Nk (12.8)
54
Suatu himpunan yang dibagi habis menjadi himpunan-himpunan yang
lebih kecil ( subset) disebut himpunan partisi (partition set). Misal ada 100 barang (S=100), diketahui 25 rusak (S1=25), maka sisanya sebanyak 75 tidak rusak (S2=75) S = S1 + S2
55
Kejadian tidak saling meniadakan.
Dua peristiwa atau lebih disebut peristiwa tidak saling lepas, apabila kedua peristiwa atau lebih tersebut dapat terjadi pada saat yang bersamaan. Peristiwa tidak saling lepas disebut juga peristiwa bersama.
56
Departemen Pariwisata memilih sebuah sampel dari 200 wisatawan
yang mengunjungi Jakarta. Dari hasil survey ternyata diperoleh bahwa 120 orang telah mengunjungi Taman Mini Indonesia Indah, dan 100 orang telah mengunjungi Taman Impian Jaya Ancol. Berapa probabilitas bahwa seorang wisatawan yang terpilih telah mengunjungi Taman Mini Indonesia Indah atau Taman Impian Jaya Ancol ?. Yang telah mengunjungi Taman Mini Indonesia Indah 120/200 = 0,60 Yang telah mengunjungi Taman Impian Jaya Ancol 100/200 = 0,50 Jumlahnya 0,60 + 0,50 = 1,1 > 1 Hal ini terjadi karena ada beberapa wisatawan yang mengunjungi kedua tempat wisata tersebut, sehingga mereka dihitung 2 kali. Ternyata setelah diteliti dari respon survei terdapat 60 orang yang mengunjungi kedua tempat wisata diatas.
57
P (A atau B ) = P(A) + P(B) - P(A dan B)
Jika dua peristiwa A dan B tidak saling lepas, probabilitas terjadinya peristiwa tersebut adalah : P (A atau B ) = P(A) + P(B) - P(A dan B) P ( A B) = P(A) + P(B) – P(A B) P (Taman Mini atau Ancol) = P(Taman Mini) + P(Ancol) – P(Taman Mini atau Ancol)
59
Contoh 12.8 : Tabel 12.9 Kartu Probabilitas Penjelasan Raja (King)
4 kartu raja dalam 1 set kartu Hati (Heart) 13 kartu heart dalam 1 set kartu Raja bergambar hati 1 kartu raja bergambar heart dalam 1 set kartu
60
P (A atau B ) = P ( A B) = P(A) + P(B) - P(A dan B)
61
Merencanakan untuk membeli
Contoh 12.9 : Tabel Merencanakan untuk membeli Benar2 telah membeli Total Ya Tidak 200 50 250 100 650 750 300 700 1000 P ( A B) = P(A) + P(B) – P(A B)
62
Contoh 53 82 164 10 93 68 30 S K A
64
- Kejadian tak bebas (dependent event)
Aturan Perkalian - Kejadian tak bebas (dependent event) - Kejadian bebas (independent event)
65
Kejadian tak bebas (bersyarat)
Probabilitas terjadinya kejadian A dengan syarat bahwa B sudah terjadi atau akan terjadi, disebut probabilitas bersyarat (conditional probability), atau biasa ditulis P (A/B)
66
Misalkan jumlah seluruh mahasiswa suatu Universitas (Swasta atau Negeri) sama dengan 10.000 orang.
Himpunan A mewakili mahasiswa lama (a). Himpunan B mewakili mahasiswa putri (b). Sedangkan 800 dari mahasiswa putri merupakan mhs lama (c). Berapa probabilitasnya bahwa mahasiswa tersebut mhs putri lama?.
67
Berapa probabilitasnya bahwa mahasiswa tersebut mhs putri lama?.
68
mahasiswa putri lama = 800 = (c)
A = 2000 mahasiswa lama (a) S = , seluruh mahasiswa (N) mahasiswa putri lama = 800 = (c) B = 3500 mahasiswa putri (b)
70
Pada umumnya probabilitas bersyarat dirumuskan sbb:
71
Contoh :
72
Tabel 1 2 3 4 5 6 11 12 13 (14) 15 (16) 21 22 (23) 24 (25) 26 31 (32) 33 (34) 35 (36) (41) 42 (43) 44 (45) 46 51 (52) 53 (54) 55 (56) (61) 62 (63) 64 (65) 66
73
S = 36 titik sampel = 36 hasil eksperimen (N = 36)
A = (11 = 2, 12 = 3, 13 = 4, 21 = 3, 22 = 4, 31 = 4 semuanya memberikan nilai X < 5, a = 6) B = (21, 41, 61, 12, 32, 52, 23, 43, 63, 14, 34, 54, 25, 45, 65, 16, 36, 56, semuanya memberikan X ganjil X = 3, 5, 7, 3, ….) b = 18 = 2 (12 dan 21, semuanya memberikan nilai X < 5 dan ganjil)
75
Contoh 12.12 : Bukan Doktor Sudah menikah Belum menikah Pria 3 12
Wanita 10 5 Doktor Sudah menikah Belum menikah Pria 40 10 Wanita Misalkan W, M, D mewakili kejadian bahwa pelamar yang terpilih wanita, menikah, dan bergelar Doktor, W = = 35 di antara 100 pelamar (S)
77
Probabilitas kejadian interseksi
Rumus Aturan Umum dari Perkalian Probabilitas (12.12)
78
Contoh :
79
Jadi Terbukti Kalau kejadiannya A, B dan C (3 kejadian), maka :
Pembuktiannya : misalnya Jadi Terbukti
80
Merencanakan untuk membeli
Diagram pohon Tabel Contoh 12.9 : Merencanakan untuk membeli Benar2 telah membeli Total Ya Tidak 200 50 250 100 650 750 300 700 1000
81
Tidak merencanakan membeli
Diagram pohon Benar telah membeli Merencanakan membeli Tidak membeli Seluruh responden Benar telah membeli Tidak merencanakan membeli Tidak membeli
82
Kejadian Bebas (Independent Event)
Apabila terjadinya peristiwa yang satu tidak mempengaruhi terjadinya peristiwa yang lain. P (AB) = P(A) P(B) = P(B) P(A) (A dan B merupakan kejadian bebas)
83
Contoh :
84
Contoh :
85
Peraga 12.14 S = N
86
Contoh :
87
Probabilitas marginal
Probabilitas terjadinya suatu Peristiwa yang tidak memiliki hubungan dengan terjadinya peristiwa lain.
88
Probabilitas Marjinal =
89
Contoh :
90
Contoh S = 1000 H 200 T 150 E 400 ME MH 50 K 250 MK MT 25 M
91
Rumus Bayes Sebagai ilustrasi, misalkan terdapat 3 kotak yang sama ukurannya dan masing-masing berisi 2 bola. Kotak 1 = A1 2 M 1 M 1 P 2 P Kotak 2 = A2 Kotak 3 = A3 Anda diminta memilih 1 kotak secara acak (random), kemudian anda diminta lagi memilih 1 bola dari kotak terpilih, juga secara acak. Anda diberitahu bahwa bola yang anda pilih tersebut ternyata bola berwarna merah. Berapakah probabilitasnya bahwa kotak yang terpilih adalah kotak Pertama, yang berisi 2 bola merah? (kotak pertama/merah)
92
Rumus Bayes S Ax A1 A2 Ai A1A A2A AiA AxA A
93
K = 3, A1 , A2 , A3 (kejadian, pemilihan kotak)
Kotak 1 = A1 2 M 1 M 1 P 2 P Kotak 2 = A2 Kotak 3 = A3 K = 3, A1 , A2 , A3 (kejadian, pemilihan kotak) A merupakan kejadian terpilihnya bola merah setelah salah satu kotak terpilih
95
A1 = keluarga yang tinggal di luar Jakarta
A2 = keluarga yang tinggal di Jakarta A = keluarga yang berpenghasilan tinggi
96
PERMUTASI & KOMBINASI Permutasi
Suatu penyusunan atau pengaturan beberapa objek ke dalam suatu urutan tertentu, dimana urutan itu penting Kombinasi adalah suatu penyusunan beberapa objek tanpa memperhatikan urutan objek tersebut .
97
Misalkan seorang direktur pemasaran suatu perusahaan mempunyai
4 alternatif didalam memasang iklan (Koran, Majalah, TVRI, RRI) dan 2 kemungkinan rancangan pembungkus (packaging design), yaitu memakai botol plastik dan kotak karton. Banyaknya kombinasi iklan dan rencana pembungkus = k . m = 4 x 2 = 8 Kalau dinyatakan dalam diagram pohon (tree diagram), gambarnya adalah sbb :
98
PERMUTASI & KOMBINASI Koran Majalah TVRI k x m = 4 x 2 = 8 RRI
m 1 Plastik Koran k 1 m 2 Karton Majalah m 3 Plastik k 2 m 4 Karton m 5 Plastik TVRI k 3 m 6 Karton k x m = 4 x 2 = 8 RRI m 7 Plastik k 4 m 8 Karton
99
Misalnya, seorang pemegang saham setelah menerima keuntungan
selama setahun mempunyai 2 alternatif, yaitu menghabiskan uang keuntungan itu untuk keperluan konsumsi atau akan menanamkan uangnya kembali. Selama 3 tahun dia akan dihadapkan kepada alternatif sebanyak 23 = 8 Perhatikan diagram pohon (tree diagram) berikut :
100
mk = 23 = 8 Tahun pertama 2 1 Tahun kedua 3 1 2 4 Tahun ketiga 1 2 3 4
5 6 7 8
101
Contoh 12.25 Ke Denpasar ( 3 pilihan ) Ke Surabaya Caranya = 6
1 M 1 M M Dari Jakarta 1 2 G 2 M G M 3 B 3 M B 1 M 4 G M 2 2 G 5 G G G 3 B 6 G B
102
Permutasi Pengertian Permutasi
Suatu penyusunan atau pengaturan beberapa objek ke dalam suatu urutan tertentu, dimana urutan itu penting Contoh : ABC BCA
103
Contoh : 3 Objek ABC, pengaturan objek tersebut adalah ABC, ACB, BAC, BCA, CAB, CBA yang disebut permutasi. Jadi permutasi 3 objek menghasilkan 6 pengaturan dengan cara yang berbeda. A B C 3 2 1 6 5 4 Permutasi Rank
104
3 cara A, B dan C Jadi banyaknya permutasi merupakan hasil kali 3 x 2 x 1 = 6 Kalau ada 4 calon, banyaknya permutasi adalah 4 x 3 x 2 x 1 = 24 Banyaknya permutasi = m(m-1)(m-2)…..(1) m = banyaknya elemen
105
Rumus-rumus Permutasi
Permutasi dari m obyek tanpa pengembalian. a. Permutasi dari m objek seluruhnya. (12.18) Permutasi m obyek diambil m setiap kali
106
b. Permutasi sebanyak x dari m obyek.
(12.19) Permutasi m obyek diambil x setiap kali
107
Contoh Untuk m = x = 5
108
KOMBINASI Kombinasi adalah suatu penyusunan beberapa objek tanpa memperhatikan urutan objek tersebut . ABC = ACB = BCA LUCY = UCYL
109
Rumus-rumus Kombinasi :
a. Kombinasi x dari m objek yang berbeda. Combinasi m obyek diambil x setiap kali
110
Contoh a. Jika N = 3 X1 X2 X3 , n = 2, maka 3 sampel tsb. ialah : X1X2 ; X1X3 dan X2X3
111
Contoh a) Cara 1 : Pengambilan pertama, kedua, ketiga mendapatkan bola merah Cara 2 :
112
c. P (2 merah dan 1 putih)
113
Contoh Tembakan dari seorang penembak mempunyai probabilitas sebesar 0,8 untuk mengenai sasaran yang dituju. Jika tembakan dilakukan 7 kali, berapa probabilitasnya bahwa 4 diantaranya mengenai sasaran?
114
Contoh Jika m = 7 dan x = 4 maka :
116
Hubungan permutasi dengan kombinasi.
Hubungan permutasi dan kombinasi dinyatakan sebagai berikut :
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.