Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
MATEMATIKA LIMIT DAN KONTINUITAS
2
Limit Bila nilai f(x) mendekati L untuk nilai x mendekati a dari arah kanan maka dikatakan bahwa limit f(x) untuk x mendekati a dari kanan sama dengan L dan dinotasikan:
3
Limit Bila nilai f(x) mendekati l untuk nilai x mendekati a dari arah kiri maka dikatakan bahwa limit f(x) untuk x mendekati a dari kanan sama dengan l dan dinotasikan:
4
Limit Bila L = l maka dikatakan bahwa limit fungsi f(x) untuk x mendekati a sama dengan L dan dinotasikan: Bila L ≠ l maka dikatakan bahwa limit fungsi f(x) untuk x mendekati a tidak ada.
5
Sifat Limit
6
Sifat Limit
7
Contoh
8
Soal: Hitunglah
9
Soal: Hitunglah
10
Soal: Buktikan
11
Kontinuitas Fungsi f(x) dikatakan kontinu pada suatu titik x = a bila:
f(a) terdefinisi , yaitu
12
Soal Diketahui: Carilah (jika ada):
13
Soal Diketahui: Hitung dan ! Selidiki apakah ada!
Jika ada, berapa nilainya?
14
Soal Diketahui: Tentukan nilai a dan b agar dan ada!
15
Soal Diketahui: Selidiki kekontinuan f(x) di x = -1!
16
Soal Diketahui: Jika f(x) kontinu, maka berapakah a+2b?
17
Soal Diketahui: Tentukan nilai a dan b, agar f(x) kontinu di x=2!
18
Soal Diketahui: Tentukan nilai a, b, c supaya f(x) kontinu di x=1!
19
Soal Tentukan nilai k, supaya f(x) kontinu:
20
Soal Cari titik diskontinu fungsi berikut:
21
Limit di Tak Hingga Secara umum, limit fungsi dari
untuk x mendekati tak hingga atau minus tak hingga sama dengan nol, dituliskan :
22
Contoh
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.