Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Kasus Khusus Simpleks & Metode Big M

Presentasi serupa


Presentasi berjudul: "Kasus Khusus Simpleks & Metode Big M"— Transcript presentasi:

1 Kasus Khusus Simpleks & Metode Big M
Program Linear Kasus Khusus Simpleks & Metode Big M

2 Kasus khusus Metode Simpleks
Saat degenerasi terjadi proses perhitungan terus dilakukan. Interasi dihentikan jika setelah 2 kali iterasi nilai z tidak berubah Degenerasi Maksimumkan z = 3x1+9x2 Kendala x1 + 4x2 ≤ 8 x1 + 2x2 ≤ 4 x1,x2 ≥ 0 Iterasi Basis x1 x2 S1 S2 solusi z -3 -9 1 4 8 2 -3/4 9/4 18 1/4 1/2 -1/2 3/2 -1 Muncul 0 pada kolom solusi sehingga ada variabel basis yang bernilai 0

3 Kasus khusus Metode Simpleks
2. Optimum Relatif Maksimumkan z = 2x1+4x2 Kendala x1 + 2x2 ≤ 5 x1 + x2 ≤ 4 x1,x2 ≥ 0 Paling sedikit satu variabel non basis, koefisien fungsi tujuannya = 0 Iterasi Basis x1 x2 S1 S2 solusi z -2 -4 1 2 5 4 10 1/2 5/2 -1/2 3/2 -1 3 x2=5/2 x1=0 z=10 x2=1 x1=3 z=10

4 Kasus khusus Metode Simpleks
3. Pemecahan Tidak Dibatasi Maksimumkan z = 2x1+x2 Kendala x1 - x2 ≤ 10 2x1 ≤ 40 x1,x2 ≥ 0 Iterasi Basis x1 x2 S1 S2 solusi z -2 -1 1 10 2 40 Dikolom variabel non basis (x2) ada nol dan negatif

5 Variabel Artifisial Digunakan untuk kendala yang bertanda ‘=‘ dan ‘≥’.
Berfungsi sebagai variabel basis diawal proses iterasi Diakhir iterasi variabel artifisial = 0 jika tidak maka solusi yang diperoleh tidak fisibel

6 Fungsi Tujuan Fungsi tujuan diberi koefisien yang sangat besar (M) pada setiap variabel artifisial dalam fungsi tujuan. Untuk maksimisasi digunakan -M Untuk minimisasi digunakan +M

7 Contoh 1 Maksimumkan: z = 3x1+5x2 Dengan kendala: x1 ≤ 4 2x2 ≤12 3x1 + 2x2 =18 x1,x2≥0 Maksimumkan: z = 3x1+5x2 - MR1 Dengan kendala: x1 +S1 = 4 2x2 +S2 =12 3x1 + 2x2 +R1 =18 x1,x2, S1,S2,R1 ≥ 0

8 Proses Metode Big M dari Soal 1
Karena variabel artifisial harus = 0 maka tentukan nilai R1 dari kendala ke 3 3x1+2x2+R1=18 R1=18-3x1-2x2 Substitusikan R1=18-3x1-2x2 ke fungsi tujuan z=3x1+5x2-MR1 sehingga z=3x1+5x2-M(18-3x1-2x2) z=3x1+5x2-18M+3Mx1+2Mx2 z-3x1-5x2-3Mx1-2Mx2=-18M z+(-3M-3)x1+(-2M-5)x2=-18M

9 Proses Metode Big M dari Soal 1
Iterasi Basis x1 x2 S1 S2 R1 Solusi Rasio. z (-3M-3) (-2M-5) -18M 1 3 2 4 12 18 4/1=4 12/0=∞ 18/3=6 (3M+3) -6M+12 -3 6 4/0=∞ 12/2=6 6/2=3 -9/2 (M+5/2) 27 -3/2 -1 1/2 6/3=2 -2 3/2 (M+1) 36 -1/3 1/3

10 Contoh 2 Minimumkan : z = 3x1+5x2 Dengan kendala: x1 ≤ 4 2x2 =12 3x1 + 2x2 ≥18 x1,x2≥0 Minimumkan: z = 3x1+5x2+MR1+MR2 Dengan kendala: x1 +S1 = 4 x2 +R1 =12 3x1 + 2x2 - S2 +R2 =18 x1,x2, S1,S2,R1,R2 ≥ 0 Lanjutkan proses Big M untuk mendapatkan solusi yang optimal

11 Latihan Maksimumkan : z = 3x1+2x2 dengan kendala : 2x1+x2≤2 3x1+4x2≥12
Tunjukkan bahwa model berikut tidak punya ruang solusi yang fisibel (disebut pseudooptimum)

12 Latihan Sebuah perusahaan konveksi memproduksi tiga jenis pakaian yaitu pakaian anak-anak, pakaian pria dan pakaian wanita. Untuk satu lusin pakaian anak-anak diperlukan 2 rol kain bercorak dan membutuhkan 4 orang pekerja, sedangkan untuk satu lusin pakaian pria dan satu lusin pakaian wanita masing-masing membutuhkan 4 dan 2 rol kain bercorak dengan tenaga kerja masing-masing 2 dan 6 orang. Kain yang disediakan setiap hari adalah 20 rol. Tenaga kerja mempunyai keahlian yang sama berjumlah 16 orang. Perusahaan mengharuskan seluruh pekerja harus digunakan (tidak ada yang menganggur). Ongkos untuk membuat masing-masing jenis pakaian adalah $15/lusin pakaian anak-anak, $30/lusin pakaian pria, dan $45/lusin pakaian wanita. Keuntungan masing-masing pakaian anak-anak, pria dan wanita adalah $25, $54, $53. Bagaimana sebaiknya perusahaan mengambil kebijakan produksi agar perusahaan mendapatkan keuntungan yang sebesar-sebesarnya.


Download ppt "Kasus Khusus Simpleks & Metode Big M"

Presentasi serupa


Iklan oleh Google