Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Perbandingan Berganda

Presentasi serupa


Presentasi berjudul: "Perbandingan Berganda"— Transcript presentasi:

1 Perbandingan Berganda

2 Uji Perbandingan Berganda
Terencana: LSD, BON, Kontras & Polinomial Ortogonal Tak terencana : LSD, Tukey, Duncan, Uji LSD atau BNT LSD = t sd  t=ttab = t/2(dbG) ; sd = √(2 KTG / r) Ingin menguji: H0: A=B vs H1: A≠B LSD = t 0.025(12) √(2*6.10/5) = 3.404 d = = 5.2 Perlakuan Rataan C a A a B b d > LSD  tolak H0 (A≠B)

3 Uji Perbandingan Berganda
Uji Tukey (BNJ=Beda Nyata Jujur) Dikenal tidak terlalu sensitif  baik digunakan untuk memisahkan perlakuan-perlakuan yang benar-benar berbeda Perbedaan mendasar dgn LSD terletak pada penentuan nilai , dimana jika misalnya ada 4 perlakuan dan ditetapkan  =5%, maka setiap pasangan perbandingan perlakuan akan menerima kesalahan sebesar:  /(2x6)% = 0.413%. Jika jumlah ulangan tidak sama, nilai r dapat didekati dengan rataan harmonik (rh) :

4 Uji Perbandingan Berganda
Uji Duncan (DMRT=Duncan Multiple Range Test) Memberikan segugus nilai pembanding yang nilainya meningkat sejalan dengan jarak peringkat dua bua perlakuan yang akan diperbandingkan dimana r;p;dbg adalah nilai tabel Duncan pada taraf , jarak peringkat dua perlakuan p, dan derajat bebas galat sebesar dbg. Jika jumlah ulangan tidak sama, nilai r dapat didekati dengan rataan harmonik (rh) seperti sebelumnya.

5 Uji Perbandingan Berganda
Uji Bonferroni Memungkinkan membuat perbandingan antar perlakuan, antara perlakuan dengan kelompok perlakuan, atau antar kelompok perlakuan Misalnya: Ada empat perlakuan A, B, C dan D. Ingin membuat perbandingan: 1. A vs BCD 2. AB vs CD 3. C vs D

6 Uji Lanjut  Kontras Ortogonal
Perlakuan A B C D 1. AB vs CD 1 -1 2. A vs B 3. C vs D

7 Uji Lanjut  Polinomial Ortogonal
Digunakan untuk menguji trend pengaruh perlakuan terhadap respon (linier, kuadratik, kubik, dst)  berlaku untuk perlakuan yang kuantitatif Bentuk Model: Linier  Yi = b0 + b1 Xi + I Kuadratik  Yi = b0 + b1 Xi + b2 Xi2 + i Kubik  Yi = b0 + b1 Xi + b2 Xi2 + b3 Xi3 + i Bentuk umum polinomial ordo ke-n adalah: Y = 0P0(X) + 1P1(X) + 2P2(X) + … + nPn(X) + i

8 Uji Lanjut  Polinomial Ortogonal
dimana dengan: a=banyaknya taraf faktor, d=jarak antar faktor, n=polinomial ordo ke-n

9 Uji Lanjut  Polinomial Ortogonal
Tabel Kontras Polinomial Ortogonal untuk jarak taraf yang sama


Download ppt "Perbandingan Berganda"

Presentasi serupa


Iklan oleh Google