Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
FACTORING ALGEBRAIC EXPRESSIONS
Created by ﺟﻴﻄ for mathlabsky.wordpress.com Created by ﺟﻴﻄ for mathlabsky.wordpress.com
2
P Q P + Q P – Q P x Q FACTORING ALGEBRAIC EXPRESSIONS
I. Arithmetical operations on algebraic : Adding Substracting Multiplying Dividing Exponentiating P Q P + Q P – Q P x Q 2x – 3 4x + 1 6x -2 -2x – 4 8x x – 3 x + 2 2x – 1 3x + 1 -x + 3 2x2 + 3x – 2 2a – a2 2a 4a – a2 -a2 4a2 – 2a3 2(3 – a) 1 – a 7 – 3a 5 – a 6 – 8a + 2a2 4b - 1 (2b + 1) 6b 2b – 2 8b2 + 2b – 1
3
P Q P : Q P P2 P3 4a 2 2a 4a2 6a3 3a 2a2 12a – 4a2 6 – 2a 8a + 16 4
-3ab3 9a2b6 -27a3b9 4ab 16a2b2 64a3b3
4
II. Factoring Algebraic Expressions
12 ab2 – 9b3c2 = 3b2 (4a – 3bc2) 4x = 22.x 12ab2 = 22.3.a.b2 8 = 23 9b3c2 = 32.b3.c2 GCD = 22 = 4 GCD = 3.b2 Exercise 12xy2 + 4x2y3z 8x – 12y 24xyz2 + 9x2y 10xy3 + 2y2z 1. 4xy2 (3 + xyz) 2. 4 (2x - 3y) 3. 3xy (8z2 + 3x) 4. 2y2 (5xy + z)
5
III. Special form A. x2 + 2xy + y2 = (x + y) 2 B. x2 - 2xy + y2 = (x - y) 2 (x + y) 2 =(x + y)(x + y) (x - y) 2 =(x - y)(x - y) = x2 + xy + xy + y2 = x2 - xy - xy + y2 = x2 + 2xy + y2 = x2 - 2xy + y2 x2 + 4x + 4 = ( … ) 2 ( x + 2) 2 x2 - 6x + 9 = ( … ) 2 ( x - 3) 2
6
A. x2 + 2xy + y2 = (x + y) 2 B. x2 - 2xy + y2 = (x - y) 2 a2 + 4a + 4
Factor the following algebraic expressions! a2 + 4a + 4 16x2 – 24x + 9 4a2 – 4ab + b2 9m2 + 30mn + 25n2 25p2 + 70pq + 49q2 1. (a + 2)2 2. (4x - 3)2 3. (2a - b)2 4. (3m + 5n)2 5. (5p + 7q)2
7
a2 – b2 (2m) 2 – 32 x2 – 49 m2 – 121 64 – y2 1. (a – b)(a + b)
C. x2 - y2 C. = (x - y)(x + y) (x – y )(x + y) = x2 + xy – xy - y2 = x2 - y2 a2 – b2 (2m) 2 – 32 x2 – 49 m2 – 121 64 – y2 1. (a – b)(a + b) 2. (2m – 3)(2m + 3) 3. (x – 7 )(x + 7) 4. (m – 11 )(m + 11) 5. (8 – y)(8 + y)
8
D. Factoring ax2 + bx + c, when a = 1
x2 + bx + c = (x + p)(x + q) Where c = p x q and b = p + q Example : 1. x2 + 10x + 16 ====> a = 1, b = 10, c = 16 p = …? q = …? … x … = 16 … + … = 10 8 2 8 2 x2 + 10x + 16 (x + 8)(x + 2) 2. x2 – x – 6 ====> a = 1, b = -1, c = -6 p = …? q = …? -3 … x … = -6 … + … = -1 2 x2 – x – 6 (x – 3)(x + 2) -3 2
9
a2 + 5a + 6 a2 + a – 6 (a + 3)(a + 2) (a – 2 )(a + 3) y2 + 6y + 9
Factor the following algebraic expressions! a2 + 5a + 6 a2 + a – 6 y2 + 6y + 9 y2 – 14y + 24 p2 + 4p – 5 (a + 3)(a + 2) (a – 2 )(a + 3) (y + 3)(y + 3) (y – 12)(y – 2) (p + 5)(p – 1)
10
E. Factoring ax2 + bx + c, when a ≠ 1
p + q = b p x q = a x c Example : 1. 2x2 + 7x + 6 ===> a = 2, b = 7, c = 6 p = …? q = …? … + … = 7 … x … = 12 4 3 4 3 2x2 + 7x + 6 2x2 + 4x + 3x + 6 2x2 + 4x + 3x + 6 2x(x + 2) + 3(x + 2) (x + 2) (… + …) (2x + 3)
11
2. 6x2 + 13x - 5 ===> a = 6, b = 13, c = -5 p = …? q = …? … + … = 13 … x … = -30 -2 15 -2 15 6x2 + 13x - 5 6x2 - 2x + 15x - 5 6x2 - 2x + 15x - 5 2x(3x - 1) + 5(3x - 1) (3x - 1) (… + …) (2x + 5)
12
IV. OPERATIONS ON ALGEBRAIC FRACTIONS
Example:
13
LINES 1. SLOPE 2. GRAPHING LINEAR EQUATIONS 3. WRITINGLINEAR EQUATIONS
4. PARALLEL & PERPENDICULAR Created by ﺠﻴﻄ for mathlabsky.wordpress.com Created by ﺠﻴﻄ for mathlabsky.wordpress.com
14
Slope of a Line Slope (gradient) is a ratio of the change in y (vertical change) to the change in x ( horizontal change) The slope, denoted by m, of the line through the points and Is defined as follows: Y ● ● Invers X
15
Find the slope of each segment (a, b, c and d)!
3 -5 6 -3 a b c d Find the slope of each segment (a, b, c and d)! Lines with positive slope rise to the right Lines with negative slope fall to the right
16
k h Find the slope of line k and h! Slope of line 4 Slope of line 6 4
8
17
Linear equations can be written in different forms :
Standard form and slope-intercept form. Form Equation Slope Standard Slope-intercept Example : Equation Form Slope standard standard Slope-intercept Slope-intercept standard Slope-intercept HOME
18
Y X Graphing Linear Equations
To draw the line we need two point determine a line. We can find the X-intercept and Y-intercept. Y X Example : graph the line 2x + 3y = 12 To find X-intercept, let y = 0 ● (0 , 4) Thus, (6 , 0) is a point on the line To find Y-intercept, let x = 0 ● (6 , 0) Thus, (0 , 4) is a point on the line HOME
19
Writing Linear Equations
1. An equation of the line that passes through the point and has slope m is : Example : Find an equation of the line through (1 , 3) and its slope 2 Solution :
20
2. An equation of the line that passes through the point and is :
Example : Find an equation of the line through (-1 , 4) and (2 , -3) Solution : HOME
21
Parallel and Perpendicular Lines
Two lines are parallel if and only if their slope equal If slope k1 = m1 and slope k2 = m2 Parallel Two lines are Perpendicular if and only if the product of Their slope = -1 If slope h1 = m1 and slope h2 = m2 Perpendicular
22
Example : check the two lines parallel or perpendicular and
Solution : Let slope the first line is ,then Let slope second line is , then The line are not parallel The line are Perpendicular
23
Exercise, check the two line parallel or perpendicular
HOME
24
RELASI Bola Basket Tari Padus I. Diagram panah
II. Pasangan berurutan {(Ali, Bola), (Bea ,Tari), (Cita, Basket),(Cita, Padus)} Siswa Ekskul Bola Basket Tari Padus Ali Bea Cita III. Cartesius Siswa Ekskul Ali Bea Cita Padus Tari Basket Bola
25
Produk Cartesius n(AXB)=6 A x B = B x A ? n(A x B) = n(B x A)
Contoh : A = {a , b} n (A) = 2 B = {1 , 2 , 3} n(B) = 3 n(AXB)=6 A x B = B x A ? A x B = (a , 1) ….. B x A = (1 , a) ….. n(A x B) = n(B x A)
26
Pemetaan / Fungsi A ke B merupakan fungsi jika setiap anggota A mempunyai tepat 1 pasang anggota B A B A B A B A B a b c 1 2 3 4 a b c 1 2 3 4 a b c 1 2 3 4 a b c 1 2 3 4 BUKAN FUNGSI FUNGSI FUNGSI BUKAN FUNGSI O
27
A B Domain = daerah asal = {a , b, c } Kodomain = daerah hasil
= {1, 2, 3, 4} Range = hasil = {1, 2, 3} 1 2 3 4 a b c
28
A B Nilai dari f(2) atau bayangan dari 2 atau peta dari 2 1 1 3
5 7 1 2 3 Fungsi : Nilai dari f(2) atau bayangan dari 2 atau peta dari 2
29
Banyaknya pemetaan/fungsi
A = {a , b , c} B = {1, 2) A B A B A B A B a b c 1 2 a b c 1 2 a b c 1 2 a b c 1 2 A B A B A B A B a b c 1 2 a b c 1 2 a b c 1 2 a b c 1 2
30
Contoh: A = {a , b , c} B = {1, 2) n (A) = 3 n (B) = 2
31
n (A) = n(B) Korespondensi satu-satu A B A B A B A B
A B Benar A B Benar A B Salah A B Salah Definisi : fungsi yang memasangkan setiap anggota A (domain) tepat satu pada anggota B (kodomain) dan sebaliknya n (A) = n(B)
32
n (A) = n(B) = 3 maka banyaknya korespondensi satu – satu adalah ?
A B A B A B A B A B A B
33
n (A) = n(B) = a banyaknya korespondensi satu –satu adalah a !
34
UH-2 Senin 21 November 2011 Materi: Relasi
Menyatakan relasi (diagram panah, pasangan berurutan, cartesius Produk cartesisu (AxB) Pemetaan/fungsi Banyak pemetaan/fungsi Nilai fungsi Korespondensi satu-satu
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.