Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehHartanti Lesmono Telah diubah "6 tahun yang lalu
1
Agribusiness Study of Programme Wiraraja University
Ekonometrika Agribusiness Study of Programme Wiraraja University Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
2
Analisis lanjut di dalam Regresi Linier
Skala dan unit pengukuran Pemilihan bentuk fungsional Perbandingan R2 Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
3
Skala dan unit pengukuran
Contoh kasus: Hubungan antara jumlah investasi swasta pada suatu daerah dengan pendapatan daerah tersebut Jumlah investasi adalah fungsi dari pendapatan daerah Jumlah investasi swasta: GPDI Pendapatan daerah: GDP Keduanya diukur di dalam dua satuan: Jutaan dollar (Millions of dollar): GPDI_Mil dan GDP_Mil Milyar dollar (Billions of dollar): GPDI_Bil dan GDP_Bil GPDI_Mil = GPDI_Bil × 1000 GDP_Mil = GDP_Bil × 1000 Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
4
Tahun GPDI(Bil) GDP(Bil) GPDI(Mil) GDP(Mil) 1988 828.2 5865.2 828200
1989 863.5 6062 863500 1990 815 6136.3 815000 1991 738.1 6079.4 738100 1992 790.4 6244.4 790400 1993 863.6 6389.6 863600 1994 975.7 6610.7 975700 1995 996.1 6761.6 996100 1996 1084.1 6994.8 1997 1206.4 7269.8 Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
5
Hasil Pendugaan Model dalam Jutaan (Million)
^GPDI_Mil_ = -1.03e *GDP_Mil (2.58e+05) (0.0399) T = 10, R-squared = 0.877 (standard errors in parentheses) Koefisien intercept dan standar error pada model Jutaan adalah 1000 kali model Milyar Model dalam Milyar (Billion) ^GPDI_Bil_ = -1.03e *GDP_Bil_ (258) (0.0399) T = 10, R-squared = 0.877 (standard errors in parentheses) Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
6
Efek dari perubahan skala pada intercept:
Jika perubahan skala dilakukan pada kedua peubah: eksogen maupun endogen Efek dari perubahan skala pada intercept: Intercept tergantung pada skala peubah endogen (Y) Gradien tidak mengalami perubahan Efek dari perubahan per unit peubah eksogen terhadap perubahan peubah endogen Rasio kedua perubahan tersebut: ∆Y/∆X Pemilihan skala harus masuk akal dan paling sederhana Milyar vs Juta Milyar memuat lebih sedikit nol: lebih sederhana Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
7
Bagaimana jika yang diubah skalanya hanya salah satu peubah?
Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
8
GDIP tetap dalam satuan Milyar (Bil), tapi GDP menggunakan satuan Juta (Mil)
Intercept tidak berubah: mengikuti skala dari peubah endogen (GPDI) ^GPDI_Bil_ = -1.03e *GDP_Bil_ (258) (0.0399) T = 10, R-squared = 0.877 (standard errors in parentheses) ^GPDI_Bil_ = -1.03e *GDP_Mil (258) (3.99e-05) T = 10, R-squared = 0.877 (standard errors in parentheses) Gradien mengalami perubahan, mengikuti perubahan skala: 1/1000 dari gradien model awal Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
9
Milik Dr. Rahma Fitriani, S. Si. , M. Sc
Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
10
Mengukur Elastisitas: Model Log Linier
Data pengeluaran per kapita setiap kuartal dari tahun (kuartal I) s/d 1998 (kuartal III) Berdasarkan data total pengeluaran pribadi, ingin diukur berapa pengeluaran untuk barang tahan lama (“durable”) Peubah yang diamati adalah PCEXP: Total pengeluaran pribadi perkapita (jutaan dollar 1992) EXPDUR: Pengeluaran untuk durable goods (jutaan dollar 1992) EXPDUR: endogen, PCEXP: eksogen Ingin diukur elastisitas total pengeluaran terhadap pengeluaran terhadap durable goods Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
11
Plot Model Linier EXPDUR vs PCEXP
Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
12
Plot log EXDUR vs log PCEXP
Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
13
Kedua model menunjukkan hubungan linier yang nyata.
Model yang digunakan sesuai dengan tujuan: Memperoleh koefisien elastisitas dari total pengeluaran pribadi terhadap pengeluaran untuk durable goods Model log-linier lebih tepat: β2 mengukur koefisien elastisitas Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
14
Pendugaan untuk kedua Model
1 juta $ kenaikan total pendapatan pribadi menaikkan pengeluaran untuk durable goods sebesar juta $ ^EXPDUR = *PCEXP (18.4)( ) T = 23, R-squared = 0.994 (standard errors in parentheses) ^l_EXPDUR = *l_PCEXP (0.107) (0.0127) T = 23, R-squared = 0.994 (standard errors in parentheses) 1 % kenaikan total pendapatan pribadi menaikkan pengeluaran untuk durable goods sebesar 0.764% Kedua model berarti secara statistik KOEFISIEN ELASTISITAS Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
15
Mengukur Laju Pertumbuhan: Log-Lin Model
Data pengeluaran per kapita setiap kuartal dari tahun (kuartal I) s/d 1998 (kuartal III) Peubah yang diamati adalah PCEXP: Total pengeluaran pribadi perkapita (jutaan dollar 1992) Ingin diukur laju pertumbuhan dari total pengeluaran pribadi per kapita dari waktu t ke waktu t+1 Digunakan peubah index waktu 1993: I → 1 1993: II → 2 1993: III → 3 dst Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
16
Model pertumbuhan: Laju pertumbuhan Nilai pada waktu t
Nilai pada waktu awal r: persentase pertumbuhan relatif terhadap awal Laju pertumbuhan Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
17
Pendugaan Model Log-Lin
^l_PCEXP = *time ( )( ) T = 23, R-squared = 0.988 (standard errors in parentheses) Dari kuartal t ke kuartal t +1 pengeluaran pribadi meningkat sebesar 0.814% Log dari pengeluaran pribadi pada t=0: 8.35 Pengeluaran pribadi pada t = 0: tahun 1992: IV, sebesar juta dollar Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
18
Engel Expenditure Model: Lin log Model
Hubungan antara pengeluaran untuk makanan dan total pengeluaran. Pengeluaran untuk makanan tergantung dari total pengeluaran. Engel Expenditure: Total pengeluaran meningkat secara geometrik Total pengeluaran untuk makanan meningkat secara aritmatik Data pengeluaran untuk makanan vs total pengeluaran pada 28 daerah di India Linier model: Pengeluaran untuk makanan= f (Total Pengeluaran) Lin Log model: Pengeluaran untuk makanan= f(ln Total Pengeluaran) Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
19
Total Pengeluaran (X) vs Pengeluaran untuk Makanan (Y)
Linier model Pengeluaran Untuk Makanan Lin-Log model Ln Total Pengeluaran Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
20
1% perubahan X Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
21
(standard errors in parentheses)
Linier Model ^FoodExp = *TotExp (62.8)(0.113) n = 28, R-squared = 0.337 (standard errors in parentheses) 1 Rupee peningkatan total pengeluaran meningkatkan kenaikan pengeluaran untuk makanan sebesar rupee Lin-Log Model ^FoodExp = -1.03e *l_TotExp (359) (57.0) n = 28, R-squared = 0.357 (standard errors in parentheses) 1 % peningkatan total pengeluaran meningkatkan kenaikan pengeluaran untuk makanan sebesar 2.16 rupee. 1 Rupee peningkatan total pengeluaran meningkatkan kenaikan pengeluaran untuk makanan sebesar 2.16 % Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
22
Pemilihan bentuk fungsional berdasarkan perbandingan nilai R2
Perbandingan dua nilai R2 boleh dilakukan pada: Dua atau beberapa model dengan peubah endogen (Y) dengan bentuk fungsional yang sama Ukuran sampel yang sama Bentuk fungsional peubah eksogen boleh berbeda Semakin tinggi R2 tidak berarti semakin baik modelnya Yang utama dalam pemilihan model Kesesuaian tanda dari penduga koefisien dengan teori ekonomi yang mendasari Keberartian penduga koefisien tersebut secara statistik Peneliti harus lebih memperhatikan hubungan logis/teoritis dari peubah eksogen terhadap peubah endogen Jika penduga koefisien nyata secara statistik, dengan tanda sesuai dengan teori: Model tetap dianggap baik walaupun R2 kecil. Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.