Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

PLTU PLTG PLTGU.

Presentasi serupa


Presentasi berjudul: "PLTU PLTG PLTGU."— Transcript presentasi:

1 PLTU PLTG PLTGU

2 PLTU Komponen utama: Boiler (Ketel uap), Turbin uap, Kondensor,
Pompa air Uap yang berfungsi sebagai fluida kerja turbin dihasilkan oleh ketel uap (boiler), sebuah alat yang berfungsi mengubah air menjadi uap Gambar sebuah sistem turbin uap sederhana yang bekerja berdasarkan siklus rankine Didalam turbin, tekanan dan temperatur uap turun, kemudian uap meninggalkan turbin dan masuk ke dalam kondensor. Kondensor berfungsi mengembunkan uap dengan jalan mendinginkannya. Air pengembunan yang terjadi di dalam kondensor disebut air kondensat. Kemudian air kondensat dialirkan kembali kedalam ketel uap dengan bantuan pompa.

3 Siklus Rankine Siklus ideal dari suatu sistem turbin uap sederhana adalah siklus Rankine. Siklus Rankine dapat digambarkan pada diagram T-s dan h-s seperti gambar diatas. Daerah dibawah garis lengkung k-K-k’ pada diagram T-s dan h-s merupakan daerah campuran fasa cair dan uap. Uap ini biasanya disebut uap basah. Garis k-K dinamai garis cair, dimana pada dan disebelah kiri garis tsb fluida ada dalam fasa cair. Sedangkan garis K-k’ dinamai garis uap jenuh, dimana pada dan disebelah kanan garis tersebut fluida ada dalam fasa uap (gas). Uap didaerah ini disebut uap kering. Titik K dinamai titik kritis, dimana temperatur dan tekanan pada titik tersebut dinamai temperatur kritis dan tekanan kritis.

4 Pemanasan Ulang Dalam kenyataan siklus sistem turbin uap menyimpang dari siklus ideal (Rankine) karena faktor-faktor seperti: - Kerugian dalam pipa saluran fluida kerja. (kerugian gesekan) - Kerugian tekanan dalam ketel uap Kerugian energi didalam turbin dan pompa. (gesekan antara fluida kerja dan bagian turbin atau pompa) Salah satu usaha utk menaikkan efisiensi turbin adalah dengan jalan menaikkan tekanan uap dan melakukan pemanasan ulang. Dengan pemanasan ulang akan memperoleh efisiensi yang lebih baik dan juga menghindari uap keluar turbin dengan suhu air yang sangat tinggi. Dengan pemanasan ulang, turbin dibagi menjadi 2 bagian, yaitu turbin tekanan tinggi (I) dan turbin tekanan rendah (II). Uap yang keluar dari turbin tekanan tinggi dipanaskan kembali didalam ketel kemudian masuk kedalam turbin tekanan rendah.

5 Siklus Rankine Siklus Rankine terdiri dari beberapa proses sbb:
Proses Pemompaan - 2-2’-3 Proses pemasukan kalor pada tekanan konstan didalam ketel Proses ekspansi (penurunan tekanan) didalam turbin Proses pengembunan pada tekanan konstan didalam kondensor Untuk menaikkan efisiensi dilakukan dengan pemanasan lanjut dari 3-3’ sehingga siklusnya menjadi 1-2-2’-3-3’-4’-1

6 Siklus Rankine Hukum I Termodinamika: Kerja yang dihasilkan oleh suatu proses siklus sama dengan jumlah perpindahan kalor pada fluida kerja selama proses siklus tersebut berlangsung. Siklus Rankine : w = luas 1-2-2’-3-4-1 Dengan pemanas lanjut w’ = luas 1-2-2’-3-3’-4’-1 Sedangkan energi yang dimasukkan kedalam sistem (proses pemanasan fluida kerja) adalah: qm = luas a–2-2’-3-b-a qm’ = luas a–2-2’-3-3’-c-a Apabila efisiensi termal (t) didefinisikan sebagai kerja yang dihasilkan dibagi dengan energi yang dimasukkan, maka untuk sistem tanpa pemanasan lanjut t = w/qm Kerja yang dihasilkan oleh sistem dapat ditunjukkan dengan mempergunakan diagram h-s.

7 Siklus Rankine Efisiensi Thermal t = w/qm = (wt- wp)/qm
Kerja yang dihasilkan oleh sistem turbin uap tersebut adalah : w = wT – wp dimana: wT = kerja yang dihasilkan oleh turbin persatuan berat fluida kerja wp = kerja yang diperlukan untuk menggerakkan pompa persatuan berat fluida kerja Efisiensi Thermal t = w/qm = (wt- wp)/qm h = enthalpi total fluida kerja persatuan berat (energi yang dihasilkan persatuan berat fluida kerja (kkal/g) Untuk sistem turbin uap dengan pemanasan lanjut: Efisiensi Thermal t’ = w’/qm’ = (wt’- wp’)/qm

8 Siklus Rankine h = (1-x) hf + x hg = hf – xhf + x hg = hf + x (hg-hf)
wp = v (P2-P1) Untuk keadaan jenuh (saturasi) enthalpy dan entropy dapat dihitung dengan persamaan: h = (1-x) hf + x hg = hf – xhf + x hg = hf + x (hg-hf) = hf + x hfg s = sf + x sfg

9 PLTG Komponen utama: Kompresor Ruang Bakar Turbin
Turbin Gas adalah turbin dengan gas sebagai fluida kerjanya. Komponen utama: Kompresor Ruang Bakar Turbin Gambar sebuah sistem turbin gas sederhana Udara atmosfir masuk ke dalam kompresor yang berfungsi mengisap dan menaikkan tekanan udara sehingga temperaturnya akan naik. Udara yang bertekanan dan bertemperatur tinggi masuk ke dalam ruang bakar. Di dalam ruang bakar disemprotkan bahan bakar ke dalam arus udara tersebut, sehingga terjadi proses pembakaran. Proses pembakaran tersebut berlangsung pada tekanan konstan, sehingga ruang bakar digunakan untuk menaikkan temperatur udara. Gas pembakaran yang bertemperatur tinggi kemudian masuk ke dalam turbin gas dan menghasilkan kerja, sebagian kerja tersebut digunakan untuk menggerakkan kompresor.

10 PLTG Pada turbin gas dengan siklus tertutup, sejumlah fluida kerja tetap dipergunakan terus menerus. Berbeda dengan pembangkit daya siklus terbuka, fluida kerja melewati sebuah alat pemindah kalor yang mendinginkan fluida kerja tersebut untuk mencapai suhu awal. Kompresor dan turbin dikopel, sehingga kompresor dapat menerima daya langsung dari turbin. Pada saat dihidupkan, kompresor mula-mula dihidupkan dengan sebuah motor starter yang terpisah, dan bila turbin telah mulai beroperasi, motor starter tersebut diputus.

11 Siklus Brayton Siklus ideal dari sistem turbin gas sederhana adalah siklus Brayton. Siklus Brayton terdiri dari proses: 1-2 : Proses kompresi isentropik dalam kompresor 2-3 : Proses pemasukan kalor pada tekanan P konstan 3-4 : Proses ekspansi isentropik dalam turbin 4-1 : Proses pembuangan kalor tekanan konstan dalam alat pemindah kalor (pendingin)

12 PLTG Pada turbin gas dengan siklus tertutup, sejumlah fluida kerja tetap dipergunakan terus menerus. Berbeda dengan pembangkit daya siklus terbuka, fluida kerja melewati sebuah alat pemindah kalor yang mendinginkan fluida kerja tersebut untuk mencapai suhu awal. Kompresor dan turbin dikopel, sehingga kompresor dapat menerima daya langsung dari turbin. Pada saat dihidupkan, kompresor mula-mula dihidupkan dengan sebuah motor starter yang terpisah, dan bila turbin telah mulai beroperasi, motor starter tersebut diputus.

13 Siklus Brayton Siklus ideal dari sistem turbin gas sederhana adalah siklus Brayton. Siklus Brayton terdiri dari proses: 1-2 : Proses kompresi isentropik dalam kompresor 2-3 : Proses pemasukan kalor pada tekanan P konstan 3-4 : Proses ekspansi isentropik dalam turbin 4-1 : Proses pembuangan kalor tekanan konstan dalam alat pemindah kalor (pendingin)

14 Siklus Brayton

15 Siklus Brayton Ideal Hubungan antara perbandingan tekanan dan perbandingan temperatur dalam kompresi atau ekspansi isentropik diberikan oleh persamaan: Efisiensi teoritis siklus Brayton: Daya yang berguna (daya efektif) diberikan oleh persamaan: Daya Teoritis diberikan oleh persamaan:

16 Gabungan Sistem Turbin Gas dan Uap
Gas buang yang keluar dari turbin gas bertemperatur antara C, oleh karena itu masih dapat dimanfaatkan sebagai fluida pemanas pada ketel uap. Dengan sistem gabungan ini, diharapkan dapat diperoleh efisiensi termal yang lebih tinggi, yaitu gabungan antara sistem turbin gas dan sistem turbin uap.

17 Keunggulan PLTG Keunggulan PLTG dibanding pembangkit lain:
Pemasangan lebih cepat. Biaya modal lebih kecil. Ruang yang diperlukan relatif kecil dehingga PLTG dapat dipasang di pusat kota/industri. Tingkat pemanasan dari dingin sampai beban penuh sangat singkat. Peralatan kontrol dan alat bantu sangat minim dan sederhana.

18 Biaya Biaya sebagai fungsi dari jam operasi

19 Perbandingan L: Lama Beban

20 Operasi

21 Contoh

22 Contoh Tentukan efisiensi siklus Rankine menggunakan uap sebagai fluida kerja dalam tekanan kondensor 10 kPa. Tekanan Boiler 2 MPa. Uap meninggalkan boiler sebagai uap jenuh.

23 Tabel Tekanan

24 Referensi Turbin, Wiranto Arismunandar
Introduction To Thermodynamics, Sonntag/Van Wylen Energi, Abdul Kadir Turbin, W.Arismunandar Mesin Konversi Energi, A.Pudjanastra, D.Nursuhud -Thermodynamics:An Engineering Approach, Yunus A Cengel


Download ppt "PLTU PLTG PLTGU."

Presentasi serupa


Iklan oleh Google