Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehIda Cahyadi Telah diubah "6 tahun yang lalu
1
CAMPURAN TIGA KOMPONEN (DIAGARAM TERNER)
KELOMPOK 5 ANGGOTA : ARIF GUNAWAN AGUSTINA HIDAYATUL AINI ISRA MIRAWATI RETNO SARI
2
Tujuan praktikum Menjelaskan aturan fasa Gibbs
Memahami diagram fasa biner dan terner dengan contoh Menjelaskan titik kritis isothermal atau titik plait Membuat kurva kelarutan suatu cairan yang terdapat dalam dua cairan tertentu
3
Landasan teori Berdasarkan hukum fasa Gibbs, jumlah terkecil variabel bebas yang diperlukan untuk menyatakan keadaan suatu sistem dengan tepat pada kesetimbangan diungkapkan sebagai : F = C – P + 2 dimana, F = jumlah derajat kebebasan C = jumlah komponen P = jumlah fasa
4
Dalam ungkapan diatas, kesetimbangan dipengaruhi oleh suhu, tekaanan dan komposisi sistem. Jumlah derajat kebebasan untuk sistem tiga komponen pada suhu dan tekanan tetap dapat dinyatakan sebagai : F = 3 – P Jika dalam sistem hanya terdapat satu fasa, maka F = 2, berarti untuk menyatakan keadaan sistem dengan tepat perlu ditentukan konsentrasi dari dua komponennya. Sedangkan bila dalam sistem terdapat dua fasa dalam kesetimbangan,maka F = 1, berarti hanya satu komponen yang harus ditentukan konsentrasinya dan konsentrasi komponen yang lain sudah tertentu berdasarkan diagram fasa untuk sistem tersebut. Oleh karena sistem tiga kompoen pada suhu dan tekanan tetap mempunyai jumlah derajat kebebasan paling banyak dua, maka diagram fasa sistem ini dapat digambarkan dalam satu bidang datar berupa suatu segitiga samasisi yang disebut diagram terner.
5
Prinsip menggambarkan komposisi dalam
diagram terner dapat dilihat pada gambar (1) dan (2) di bawah ini. Titik A, B dan C menyatakan kompoenen murni. Titik-titik pada sisi Ab, BC dan Ac menyatakan fraksi dari dua komponen, sedangkan titik didalam segitiga menyatakan fraksi dari tiga komponen. Titik P menyatakan suatu campuran dengan fraksi dari A, B dan C masing-masing sebanyak x, y dan z.
6
Titik X menyatakan suatu campuran dengan fraksi A = 25%, B = 25%, dan C =50%. Titik-titik pada garis BP dan BQ menyatakan campuran dengan perbandingan dengan jumlah A dan C yang tetap, tetapi dengan jumlah B yang berubah. Hal yang sama berlaku bagi garis-garis yang ditarik dari salah satu sudut segitiga kesisi yang ada dihadapannya. Daerah didalam lengkungan merupakan daerah dua fasa. Salah satu cara untuk menentukan garis binoidal atau kurva kelarutan ini ialah dengan cara menambah zat B ke dalam berbagai komposisi campuran A dan C. Titik-titik pada lengkungan menggambarkan komposisi sistem pada saat terjadi perubahan dari jernih menjadi keruh. Kekeruhan timbul karena larutan tiga komponen yang homogen pecah menjadi dua larutan konjugat terner.
7
Alat dan bahan Alat :- Erlenmeyer - pipet takar - bola hisap - Buret - Plastik penutup dan karet - Labu takar 100 mL - Termometer Bahan : asam asetat glasial air kloroform methanol benzena
8
Ulangi langkah 3-6 untuk labu ke 2-9
Cara kerja Cairan A B C Keterangan : A & B saling larut sebagian A : air C larut sempurna dalam A & B B : asam asetat tentukan rapat masa A B C C : kloroform buat 9 macam campuran A & C saling larut titrasi tiap campuran catat jumlah zat C yang digunakan catat temperatur kamar sebelum dan sesudah percobaan Erlenmeyer Ulangi langkah 3-6 untuk labu ke 2-9
9
Tabel pengamatan Labu 1 2 3 4 5 6 7 8 9 Suhu awal Suhu akhir mL A
28 °C 30 °C mL B 20 8,8 3,7 3,5 2,5 2,4 1,9 1,8 0,5 27 °C mL C
10
Pembahasan Praktikum kelarutan zat ini bertujuan untuk mengetahui berapa perbandingan pelarut yang harus ditambahkan sehingga dapat melarutkan suatu zat, sehingga didapatkan perbandingan komponen yang mempunyai efisiensi yang besar, baik dari segi banyaknya zat yang dibutuhkan ataupun dari segi sifat zatnya sendiri. Pemisahan menggunakan pelarut yang tidak larut dengan sempurna terhadap campuran, tetapi dapat melarutkan salah satu komponen (solute) dalam campuran. Metode yang digunakan ialah metode titrasi. Pemisahan dilakukan dengan menggunakan pelarut yang tidak larut dengan sempurna terhadap campuran, tetapi dapat melarutkan salah satu komponen dalam campuran tersebut.
11
Pada praktikum dicampurkan tiga komponen berfasa cair (aquades, kloroform dan asam asetat glasial). Air dan asam asetat dapat larut sempurna, demikian pula halnya dengan CCl4 dan asam asetat . Berbeda dengan air dan CCl4, dimana CCl4 tidak larut dalam air , karena CCl4 bersifat non polar sehingga tidak dapat larut dalam campuran air yang bersifat polar. Ditambahkan asam asetat glasial yang berfungsi sebagai emulgator karena asam asetat glasial larut dalam kloroform maupun air. Percobaan dibagi menjadi 2 yaitu percobaan titrasi 1 dimana titrat yang digunakan adalah CCl4 dan asam asetat glasial, serta kloroform sebagai titran. Untuk percobaan titrasi 2 titrat yang digunakan yaitu CCl4 dan etanol, sedangkan titran yang digunakan yaitu aquades.
12
Titik akhir titrasi telah tercapai dengan terbentuknya larutan keruh yang menandakan telah terpisahnya komponen-komponen campuran dari larutan tiga komponen menjadi dua komponen larutan terner terkonjugasi. Semakin banyak asam asetat glasial yang dicampurkan dengan aquades maka semakin banyak pula kloroform yang dibutuhkan untuk mencapai titik ekivalen. Jadi asam asetat glasial dapat menaikan kelarutan kloroform dalam air.
13
Kesimpulan Pada praktikum ini, diketahui bahwa Dua komponen larutan yang saling melarutkan akan membentuk fase tunggal dan yang tak saling melarutkan akan membentuk daerah berfase dua. Kelarutan dari zat dalam pencampuran dapat dinaikan atau diturunkan dengan melihat perbandingannya dari diagram terner. Pencampuran zat akan homogen (saling melarutkan) jika komposisinya sesuai perbandingan, apabila komposisi salah satunya melebihi maka akan terjadi pencampuran heterogen. Titik akhir titrasi ditandai adanya kekeruhan pada campuran yang menandakan kelarutan dari cairan berkurang dan menunjukkan telah terpisahnya komponen-komponen campuran larutan tiga komponen menjadi dua komponen larutan terner terkonjugasi.
14
Daftar pustaka Atkins, P.W.2006.Kimia Fisika.Jakarta:Erlangga A.W. Francis Liquid-Liquid Equilibriums. New York.Interscience Publisher Sukardjo.1997.Kimia Fisika.Yogyakarta:UGM Tim Kimia Fisika.2015.Penuntun Praktikum Kimia Fisika 1.Padang:UNP
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.