Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehIvan Pranoto Telah diubah "6 tahun yang lalu
1
Teknik Simulasi Bilangan Random oleh Veni Wedyawati, S.Kom, M. Kom
Yayasan Perguruan Tinggi Komputer Universitas Putra Indonesia “ YPTK” Padang Fakultas Ilmu Komputer Teknik Simulasi Bilangan Random oleh Veni Wedyawati, S.Kom, M. Kom
2
Bilangan Acak..? Bilangan acak adalah bilangan yang tidak dapat diprediksi kemunculannya Tidak ada komputasi yang benar-benar menghasilkan deret bilangan acak secara sempurna Bilangan acak yang dibangkitkan oleh komputer adalah bilangan acak semu (Pseudo Random Number), karena menggunakan rumus-rumus matematika. Banyak algoritma atau metode yang dapat digunakan untuk membangkitkan bilangan acak Bilangan acak dapat dibangkitkan dengan pola tertentu yang dinamakan dengan distribusi mengikuti fungsi distribusi yang ditentukan
3
PEMBANGKIT BILANGAN ACAK (RANDOM NUMBER GENERATOR) (RNG)
Adalah Bilangan random pada suatu algoritma yang digunakan untuk menghasilkan urutan/sequensial dari angka-angka, sehingga hasil perhitungan dengan menggunakan komputer dapat diketahui distribusinya, sehingga pemunculan angka secara random dapat digunakan terus menerus.
4
Sifat-sifat RNG Squensial
Adalah bilangan random dapat digunakan terus menerus sehingga dihasilkan secara berurutan yang sesuai dengan distribusi yang dikehendaki. Distribusi Adalah distribusi probabilitas yang digunakan/yang terlibat langsung dalam mencari bilangan random tersebut, pada umumnya distribusi yang digunakan adalah distribusi uniform bernilai antara 0 dan tak hingga. Munculnya angka secara random Adalah algoritma yang menghasilkan angka yang akan keluar berikutnya dengan kata lain angka yang diperoleh merupakan penentu bagi angka random berikutnya.
5
Cara Memperoleh Bilangan Random
Zaman Dahulu, dgn cara : Melempar Dadu Mengocok Kartu Zaman Modern, Dengan cara : Membentuk bilangan acak secara numerik / aritmatika ( menggunakan komputer) disebut “Pseudo Random Number” (Bilangan Pseudo Acak)
6
Bilangan acak yang berkualitas baik:
Bila terjadi perulangan atau munculnya bilangan acak yang sama → setelah sekian periode tertentu (semakin lama semakin baik) b) Bila terjadi perulangan → kemunculannya tidak bisa diprediksi
7
Sumber bilangan acak Metode Linear Congruent Method (LCM)
a. Tabel bilangan random b. Electronic random number c. Pembangkitan bilangan acak semu (congruential pseudo random number generator) dengan algoritma matematika Beberapa metode pembangkitan bilangan acak semu: Metode Multiplicative RNG (MRNG) Metode Linear Congruent Method (LCM)
8
Metode Multiplicative RNG (MRNG)
bilangan acak yang dibangkitkan oleh komputer (bersifat acak semu), dibangkitkan menggunakan rumus matematika yang dikerjakan berulang-ulang sesuai kebutuhan. Metode Multiplicative RNG (MRNG) Rumus Zi+1 = (a . Zi + c) mod m R1 = Zi+1 / m bilangan random yang dihasilkan = R1, R2, R3, R4, …...
9
Zi+1 = (a . Zi + c) mod m R1 = Zi+1 / m ketentuan:
Memilih konstanta pengali (multiplier) a Memilih Z0 Z0 Angka pertama yang bebas tertentu Untuk bilangan random pertama maka Zi ← Z0 Memilih c c bilangan ganjil dan bukan kelipatan dari m Memilih nilai m catatan: pada proses iterasi, a, c, dan m, bersifat konstan Zi+1 = Hasil Akhir
10
Metode Linear Congruent Method (LCM)
Rumus Zi+1 = (a . Zi + c) mod m bilangan random yang dihasilkan = Z1, Z2, Z3, Z4, …... Metode ini banyak digunakan di dalam program komputer, ketentuan untuk memilih Z0, a, c, dan m sama dengan metode MRNG. Pada proses iterasi, a, c, dan m, bersifat konstan. Disini meniadakan langkah R1 = Zi+1 / m, sehingga bilangan acak yang dihasilkan adalah bulat dan bernilai < m.
11
Contoh : Carilah 5 bilangan acak mengunakan metode Multiplicative RNG, dengan nilai awal Z0=12357, a=19, c=237, m=128. Gunakan tingkat ketelitian 4 digit di belakang koma. 2. Bangkitkanlah 14 buah bilangan acak mengunakan metode LCM, dengan nilai awal Z0=3, a=4, c=7, m=15.
12
Jawaban Contoh (RNG) bilangan acak 1 Zi+1 = (a . Zi + c) mod m
= 12 R1 = Zi+1 / m = 12 /128 =
13
Bilangan acak 4……………..5 bilangan acak 2 Zi+1 = (a . Zi + c) mod m
= 81 R1 = Zi+1 / m = 81 /128 = bilangan acak 3 Zi+1 = (a . Zi + c) mod m = ( ) mod 128 = 1776 mod 128 = 112 R1 = Zi+1 / m = 112 /128 = 0.875 Bilangan acak 4……………..5
14
membangkitkan enam buah bilangan acak
Jawaban Contoh (LCM) 4 8 Analisa: Kemunculan bilangan acak akan berulang setelah membangkitkan enam buah bilangan acak
15
Kesimpulan..... Untuk kedua algoritma MRNG dan LCM.....
penentuan nilai awal Z0 dan konstanta (a, c, dan m) akan menentukan kualitas bilangan acak yang dihasilkan. Bilangan acak yang baik (pada umumnya)..... apabila terjadinya perulangan atau munculnya bilangan acak yang sama, dapat terjadi setelah sekian banyak pembangkitan bilangan acak (semakin banyak akan semakin baik) serta tidak bisa diprediksi kapan terjadi perulangannya.
16
TUGAS INDIVIDU (2) Carilah 8 bilangan acak mengunakan metode Multiplicative, RNG dengan nilai awal : Z0= (Tahun Lahir), a= (Umur Saudara), c= (tinggi Badan), m= (Nomor Sepatu) Gunakan tingkat ketelitian 4 digit di belakang koma. 2. Membangkitkan bilangan acak mengunakan metode LCM sebanyak 12 kali dengan Ketentuan : Z0= (Jumlah Bersaudara), a = (Jumlah Digit Panggilan Saudara), c = (Pilih satu digit angka dari 2-9) m = (Berat Badan)
17
LATIHAN SOAL 1. Membangkitkan bilangan acak sebanyak 12 kali dengan
mengunakan metode LCM, dengan ketentuan a = 2, c = 7, m =10, dan Z0= 2 2. Carilah 5 bilangan acak mengunakan metode Multiplicative RNG, dengan nilai awal Z0=13, a=21, c=3, m=16. Gunakan tingkat ketelitian 4 digit di belakang koma.
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.