Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

LAJU DAN MEKANISME DALAM REAKSI KIMIA

Presentasi serupa


Presentasi berjudul: "LAJU DAN MEKANISME DALAM REAKSI KIMIA"— Transcript presentasi:

1 LAJU DAN MEKANISME DALAM REAKSI KIMIA
KINETIKA KIMIA LAJU DAN MEKANISME DALAM REAKSI KIMIA

2 Pendahuluan Perubahan kimia secara sederhana ditulis dalam persamaan reaksi dengan koefisien seimbang Namun persamaan reaksi tidak dapat menjawab 3 pertanyaan Seberapa cepat reaksi berlangsung Bagaimana konsentrasi reaktan dan produk saat reaksi selesai Apakah reaksi berjalan dengan sendirinya dan melepaskan energi, ataukah ia memerlukan energi untuk bereaksi?

3 Pendahuluan lanjutan Kinetika kimia adalah studi tentang laju reaksi, perubahan konsentrasi reaktan (atau produk) sebagai fungsi dari waktu Reaksi dapat berlangsung dengan laju yang bervariasi, ada yang serta merta, perlu cukup waktu (pembakaran) atau waktu yang sangat lama seperti penuaan, pembentukan batubara dan beberapa reaksi peluruhan radioaktif

4 Faktor yang Mempengaruhi Laju Reaksi
Pada kondisi tertentu masing-masing reaksi memiliki karakteristik laju masing-masing yang ditentukan oleh sifat kimia reaktan Pada suhu kamar: H2(g) + F2(g)  2HF(g) sangat cepat 3H2(g) + N2(g)  2NH3(g) sangat lambat

5 Faktor yang Mempengaruhi Laju Reaksi
Konsentrasi: molekul-molekul harus bertumbukan agar terjadi reaksi dalam konteks ini laju reaksi proporsional dengan konsentrasi reaktan Keadaan fisik: molekul-molekul harus bercampur agar dapat bertumbukan Temperatur: molekul harus bertumbukan dengan energi yang cukup untuk bereaksi

6 Mengekspresikan Laju Reaksi

7 Laju Reaksi Rerata, Instan dan Awal
C2H4(g) + O3(g)  C2H4O(g) + O2(g) Konsentrasi O3 pada beberapa waktu dalam Reaksinya dengan C2H4 pada 303 K Waktu (s) Konsentrasi O3 (mol/L) 0,0 10,0 20,0 30,0 40,0 50,0 60,0 3,20 x 10-5 2,42 x 10-5 1,95 x 10-5 1,63 x 10-5 1,40 x 10-5 1,23 x 10-5 1,10 x 10-5

8 Plot Konsentrasi vs Waktu

9 Ekspresi Laju dalam Konsentrasi Reaktan dan Produk

10 Soal Latihan Karena menghasilkan produk gas non polusi, hidrogen sebagai bahan bakar roket dan sumber energi masa depan: 2H2(g) + O2(g)  2H2O(g) Tuliskan laju reaksi ini dalam suku perubahan [H2], [O2] dan [H2O] terhadap waktu Saat O2 turun pada 0,23 mol/L.s berapa kenaikan terbentuknya H2O?

11 Persamaan Laju dan komponennya
Untuk reaksi umum: aA + bB  cC + dD + ... Persamaan lajunya berbentuk Laju = k[A]m[B]n Konstanta proporsionalitas k disebut juga konstanta laju dan karakteristik untuk reaksi pada suhu tertentu serta tidak berubah saat reaksi terjadi m dan n disebut orde reaksi didefinisikan sejauhmana laju reaksi dipengaruhi oleh konsentrasi masing-masing reaktan Komponen persamaan laju: laju, orde reaksi dan konstanta laju harus ditentukan berdasarkan eksperimen bukan berdasarkan persamaan stoikiometris yang seimbang

12 Terminologi Orde Reaksi
NO(g) + O3(g)  NO2(g) + O2(g) Persamaan laju hasil eksperimen Laju = k[NO][O3] Reaksi dikatakan orde satu terhadap NO dan orde satu terhadap O3 dan secara overall reaksi berorde dua

13 Menentukan Orde Reaksi
Misalkan suatu reaksi: O2(g) + 2NO(g)  2NO2(g) Persamaan laju dituliskan sebagai Laju = k[O2]m[NO]n Untuk menentukan orde reaksi kita harus melakukan serangkaian eksperimen masing-masing dimulai dengan satu set konsentrasi reaktan yang berbeda-beda dan dari masing-masing akan diperoleh laju awal

14 Pada suhu tinggi, HI bereaksi menurut persamaan berikut:
2 HI(g) → H2(g) + I2(g) Pada suhu 443°C laju reaksi meningkat seiring dengan meningkatnya konsentrasi HI sebagai berikut: [HI] (mol/L 0,0050 0,010 0,020 Laju (mol/L detik) 7,5 x 10-4 3,0 x 10-3 1,2 x 10-2 a. Tentukan orde reaksi dan tulislah hukum lajunya b. Hitunglah tetapan laju dan nyatakan satuannya c. Hitunglah laju reaksi untuk HI dengan konsentrasi 0,0020 M

15 Penyelesaian a. Hukum laju pada dua konsentrasi [HI]1 dan[HI]2yang berbeda ialah: n laju1 = k([HI]1)n laju2 = k([HI]2)n laju2 laju1 = [HI]2 [HI]1 n 3,0 x 10-3 7,5 x 10-4 = 0,010 0,0050 4 = (2)n n = 2 Hukum laju = k[HI]2

16 b. Tetapan laju k dihitung dengan memasukan nilai pada set data
yang mana saja dengan menggunakan hukum laju yang sudah ditetapkan. Misalnya, jika kita ambil set data pertama: 7, 5 x 10-4 mol L-1 s-1 = k(0,0050 mol L-1)2 Jadi, k = 30 L mol-1 s-1 c. Laju dapat dihitung untuk [HI] = 0,0020 M: laju = k[HI]2 = (30 L mol-1 s-1)(0,0020 mol L-1)2 = 1,2 x 10-4 mol L-1 s-1

17 Soal Latihan Salah satu reaksi gas yang terjadi dalam kendaraan adalah: NO2(g) + CO(g)  NO(g) + CO2(g) Laju = k[NO2]m[CO]n Jika diketahui data sebagai berikut, tentukan orde reaksi keseluruhan Eksperimen Laju awal (mol/L.s) [NO2] awal (mol/L) [CO] awal (mol/L) 1 2 3 0,0050 0,080 0,10 0,40 0,20

18 Persamaan laju Integral Perubahan Konsentrasi terhadap waktu

19 Menentukan Orde Reaksi dari Persamaan Laju Integral

20 Soal Data reaksi dimerisasi 2A  A2 suatu senyawa nitril oksida, ditunjukan pada tabel berikut: [A]/(mmol/L) 68,0 50,2 40,3 33,1 28,4 22,3 18,7 14,5 t/min Buktikan bahwa reaksi orde satu, dan tentukan besarnya konstanta laju reaksi.

21 Waktu Paruh Reaksi

22 Persamaan Arrhenius

23 Pengaruh Konsentrasi dan Temperatur

24 Diagram Tingkat Energi

25 Pengaruh Struktur Molekul : Faktor Frekuensi
Tumbukan Efektif: molekul harus bertumbukan sedemikian rupa sehingga atom yang bereaksi melakukan kontak dengan energi yang cukup sehingga membentuk produk 2 kriteria: energi yang cukup dan orientasi molekul yang tepat

26 Teori Keadaan Transisi

27 Diagram Energi dan Keadaan Transisi 3 Jenis Reaksi

28 Diagram Energi Reaksi 2 Tahap

29 Diagram Energi Reaksi Katalisis dan Non Katalisis

30 FAKTOR-FAKTOR LAJU REAKSI
1. Macam zat yang bereaksi 2. Konsentrasi zat yang bereaksi Konsentrasi pereaksi berbanding lurus dengan laju reaksi 3. Tekanan untuk reaksi yang melibatkan gas, karena konsentrasi gas berhubungan dengan tekanan 4. Luas permukaan semakin halus bentuk zat yang bereaksi semakin cepat laju reaksi. Contoh: laju reaksi Alumunium dalam bentuk serbuk > laju reaksi alumunium dalam bentuk batangan

31 ( ) ( ) k = A e-Ea/RT y a b x 5. Suhu
semakin tinggi suhu maka energi kinetik molekul meningkat sehingga frekuensi tumbukan semakin tinggi sehingga laju reaksi meningkat Tetapan laju bervariasi secara eksponensial dengan kebalikan suhu k = A e-Ea/RT Ea RT ( ) ( ) Ea R T ln k = ln A - ln k = ln A - y a b x

32 >< Inhibitor → H2 + C2H4 C2H6 6. Katalis
zat yang mempercepat reaksi kimia tetapi tidak mengalami perubahan yang permanen • Katalis homogen • Katalis heterogen : fasa sama dengan reaktan : fasa berbeda dengan reaktan >< Inhibitor Katalis Contoh: Logam platina (Pt) mengkatalis reaksi hidrogenasi etena menjadi etana Pt H2 + C2H4 C2H6

33 H2 Etilena C2H5, Etilena, C2H4 Fasa gas Permukaan Pt Atom H2
teradsorpsi Atom H2 Etilena Fasa gas Permukaan Pt C2H5, Zat antara Etana, C2H6 teradsorpsi Etana, C2H6 terdesorpsi

34 Katalis Menurunkan energi aktivasi Ea.f Ea.f Ea.r Ea.r ∆E Produk
Penghalang energi tanpa katalis Ea.f Energi Potensial Ea.f Penghalang energi dengan katalis Reaktan Menurunkan energi aktivasi Ea.r Ea.r ∆E Produk Koordinat reaksi

35 Mekanisme reaksi menyatakan jenis dan jumlah tahap
pada suatu reaksi Reaksi Elementer Unimolekular : Bimolekular : Termolekular : N2O5* → NO2 + NO3 laju = k [N2O5*] NO(g) + O3(g) → NO2(g) + O2(g) laju = k [NO] [O3] I + I + Ar → I2 + Ar laju = k [ I ]2 [Ar] laju = k [ I ]2

36 Carilah molekularitas pada reaksi satu tahap beikut:
a. NO + N2O5 b. 2NO + Cl2 c. Cl + Cl + M d. C6H5 – CH NC – CH 3NO2 2NOCl Cl M C6H5 – CH (isomer cis trans) CH - CN

37 Penyelesaian a. bimolekular (2 molekul yaitu NO dan N2O5)
b. termokular (3 molekul yaitu 2 molekul NO dan 1 molekul Cl2) c. termokular (3 molekul yaitu Cl, Cl, dan M) d. unimolekular (1 molekul)

38 ENZIM SEBAGAI KATALIS E+ S E– S E– P E+ P Mekanisme Kerja Enzim
Enzim merupakan protein globular yang dapat mengkatalisis reaksi biokimia spesifik Mekanisme Kerja Enzim E+ S E– S E– P E+ P S = substrat; P = produk

39 Faktor-faktor yang mempengaruhi kerja enzim
a. pH muatan enzim bergantung pada pH lingkungannya dan mempengaruhi keaktifan dari sisi aktif enzim b. Suhu suhu dapat merusak struktur tiga dimensi dari enzim (protein) c. Aktivator aktivitas enzim dapat meningkat dengan adanya ion-ion anorganik. Contohnhya: ion Cl- pada enzim amilase air liur

40 LATIHAN SOAL-SOAL 1. Dalam mengkaji reaksi piridina (C5H5N) dengan metil iodida (CH3I) dalam larutan benzena, berikut ini adalah data laju reaksi awal yang diukur pada suhu 25oC untuk berbagai konsentrasi awal dari dua reaktan: a. Tentukan hukum laju untuk reaksi ini b. Hitunglah konstanta laju dan nyatakan satuannya c. Hitunglah laju reaksi untu larutan dengan [C5H5N] 5,0 x 10-5 M dan [CH3I] 2,0 x 10-5 M [C5H5N] (mol/L) [CH3I](mol/L) Laju(mol/L detik) -4 1,00 x 10 -7 7,5 x 10 2,00 x 10 -6 3,0 x 10 4,00 x 10 6,0 x 10

41 2. Senyawa A terurai membentuk B dan C pada reaksi yang mengikuti
ordo pertama. Pada suhu 25oC konstanta laju reaksinya adalah 0,0450 detik-1. Hitunglah waktu paruh zat A pada suhu 25oC 3. Dimerisasi tetrafluoroetilena (C2F4) menjadi oktafluorosiklobutana (C4F8) mempunyai orde kedua untuk pereaksi C2F4 dan pada suhu 450 K konstanta lajunya k = 0,0448 L mol-1 detik-1. Jika konsentrasi awal C2F4 0,100 M, berapa konsentrasinya sesudah 250 detik 4. Pada suhu 600 K, konstanta laju untuk dekomposisi reaksi ordo pertama nitroetana : CH3CH2NO2 (g) C2H4 (g) + HNO2 (g) adalah 1,9 x 10-4 detik-1. Sampel CH3CH2NO2 dipanaskan pada suhu 600 K dan pada suhu ini tekanan parsial awalnya adalah 0,078 atm. Hitunglah tekanan parsialnya setelah 3 jam

42 5. Identifikasi setiap reaksi elementer berikut sebagai unimolekular,
bimolekular, atau termolekular, dan tulislah hukum lajunya a. HCO + O2 b. CH3 + O2 + N2 HO2 + CO CH3O2N2 c. HO2NO2 HO2 + NO2 6. Tetapan laju dari reaksi elementer: BH4- (aq) + NH4+ (aq) BH3NH3 (aq) + H2 (g) ialah k = 1,94 x 10-4 L/mol detik pada suhu 30oC dan reaksi memiliki energi aktivasi 161 kJ/mol. Hitunglah tetapan laju reaksi di atas pada suhu 40oC


Download ppt "LAJU DAN MEKANISME DALAM REAKSI KIMIA"

Presentasi serupa


Iklan oleh Google