Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehSuparman Tedja Telah diubah "6 tahun yang lalu
1
BARISAN DAN DERET Widita Kurniasari Modul 9 Agustus 2006
2
PENGERTIAN Barisan (sequence), Un, adalah suatu susunan bilangan yang dibentuk menurut suatu urutan tertentu Un : suku ke n Un = f (n) ; n = bilangan asli Deret (series), Sn, adalah jumlah semua suku dari suatu barisan Jenis barisan dan deret : Aritmetika (Hitung) Geometrika (Ukur)
3
BARISAN & DERET ARITMETIKA
Barisan :Un = a + (n – 1)b Un : suku ke n a = U1 = suku pertama b = beda/selisih = Un – Un-1 Deret : Sn = n/2 (a + Un), atau Sn = n/2 (2a + (n – 1) b) Sn : jumlah n suku pertama Hubungan barisan dan deret : Un = Sn – Sn-1
4
CONTOH SOAL Cari suku ke 10 dan jumlah dari 15 suku pertama barisan 3, 7, 11 .. Cari suku ke 8 dan jumlah dari 10 suku pertama dari barisan aritmetika jika nilai suku ke 2 = 8 dan suku ke 5 = 17 Penjualan bulan Januari sebesar unit dan tiap bulan penjualan turun sebesar 100 unit. Berapakah : Jumlah penjualan pada bulan Oktober Total penjualan sampai dengan Desember Diketahui Sn = 3n2 + 4n, tentukan suku ke 7
5
BARISAN & DERET GEOMETRIKA
Barisan :Un = arn-1 Un : suku ke n Sn : jumlah dari n suku pertama a = U1 = suku pertama r = rasio = Un/Un-1 Deret : Sn = a(rn – 1)/(r – 1) jika r > 1 Sn = a(1 – rn)/(1 – r) jika r < 1, r ≠ 0 Sn = a/(1 – r) jika n = ~
6
CONTOH SOAL Carilah suku ke 3 dan jumlah dari 7 suku pertama barisan 8, 16, 32 .. Carilah suku ke 10 dan jumlah dari 12 suku pertama dari barisan geometri jika suku ke 2 = 8 dan suku ke 5 = 64 Produksi tahun pertama sebesar unit dan tiap tahun terjadi kenaikan 5%. Berapa : Jumlah produksi tahun ke 5 Total produksi dalam 8 tahun terakhir
7
APLIKASI BARISAN & DERET
Bunga Tunggal : Mn = Mo(1 + n.i) barisan aritmetika Bunga Majemuk : Mn = Mo(1 + i)n barisan geometrika Penyusutan Menurut harga beli Straight line method Menurut nilai buku Metode Sum of year digit Metode Double Declining Balance (DDB)
8
PENYUSUTAN MENURUT HARGA BELI
Penyusutan tiap tahun bersifat tetap, yakni i% dari harga beli aktiva (P). barisan aritmetika Nilai sisa (scrub/salvage value), S, dari suatu barang setelah jangka waktu tertentu (n) S = P (1 – n i) Besar penyusutan : P – S Tingkat penyusutan (%) :
9
CONTOH SOAL Sebuah mesin dibeli seharga Rp 50 juta, diperkirakan umur mesin tersebut 5 dengan nilai sisa Rp 8 juta tahun. Tentukan tingkat penyusutan dan besarnya penyusutan tiap tahun
10
PENYUSUTAN MENURUT NILAI BUKU
Penyusutan tiap tahun semakin lama semakin menurun. barisan geometrika Nilai sisa (scrub/salvage value), S, dari suatu barang setelah jangka waktu tertentu (n) S = P (1 – i)n Besar penyusutan : P – S Tingkat penyusutan (%) :
11
CONTOH SOAL Sebuah mesin dibeli seharga Rp 50 juta, diperkirakan umur mesin tersebut 5 dengan nilai sisa Rp 8 juta tahun. Tentukan tingkat penyusutan dan besarnya penyusutan tiap tahun
12
METODE “SUM OF YEAR DIGITS”
Penyusutan ditentukan oleh jumlah angka tahun dari periode penyusutan. Jika periode penyusutan = n, maka jumlah angka tahun = ½ n (n + 1) Besarnya penyusutan pada tahun pertama Berkurangnya penyusutan tiap tahun Besarnya penyusutan pada tahun ke-k (k≤n) :
13
CONTOH SOAL Sebuah mesin dibeli seharga Rp 50 juta, diperkirakan umur mesin tersebut 5 dengan nilai sisa Rp 8 juta tahun. Tentukan besarnya penyusutan tahun pertama Berapa besarnya pengurangan penyusutan tiap tahun
14
METODE “DOUBLE DECLINING BALANCE”
Penyusutan ditentukan berdasarkan angka penyusutan (besarnya = 2) dibagi umur penyusutan (useful life), yakni 2/n. Besar penyusutan tiap periode : Tahun pertama : 2/n x nilai beli aktiva Tahun berikutnya : 2/n x nilai buku tahun ybs
15
CONTOH SOAL Sebuah mesin dibeli seharga Rp 50 juta, diperkirakan umur mesin tersebut 5 dengan nilai sisa Rp 8 juta tahun. Tentukan besarnya penyusutan tahun pertama dan kedua.
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.