Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

SERBA SERBI PHYTAGORAS

Presentasi serupa


Presentasi berjudul: "SERBA SERBI PHYTAGORAS"— Transcript presentasi:

1 SERBA SERBI PHYTAGORAS
DALIL PHYTAGORAS SERBA SERBI PHYTAGORAS MATERI LATIHAN SOAL APLIKASI PHYTAGORAS TIM KREATIF GEHA FOUNDATION

2 PENGERTIAN PHYTAGORAS
Pythagoras adalah seorang ahli Matematika Yunani,beliau yakin bahwa matematika menyimpan semua rahasia alam semesta dan percaya bahwa beberapa angka memiliki keajaiban. Beliau diingat karena rumus sederhana dalam geometri tentang ketiga sisi dalam segitiga siku-siku. Rumus itu di kenal sebagai teorema pythagoras. HOME NEXT

3 Pembuktian phytagoras
Sobat hitung pasti tidak asing lagi dengan rumus a2 + b2 = c2. Itu adalah rumus dari teorema pythagoras. Kurang lebih 2500 tahun yang lalu seorang filsuf  yunani bernama Pythagoras menemukan fakta menarik tentang segitiga. Beliau menyatakan dalam sebuah segitiga siku-siku (salah satu sudutnya 90 derajat), kuadrat sisi miringnya akan sama dengan jumlah kuadrat dari 2 sisi yang lain BACK NEXT

4 Untuk pembuktian Mari sobat simak gambar berikut.
Jika kita punya sebuah segitiga siku-siku dengan sisi a,b, dan c Akan berlaku a2 + b2 = c2 dalam teorema yang dikemukakan oleh Pythagoras, sisi c atau sisi miring disebut dengan hipotenusa BACK NEXT

5 dengan melihat gambar tersebut maka
Jika kuadrat merupakan luasan persegi, maka berlaku luasan persegi dari panjang sisi a + luasan persegi dari panjang sisi b = luasan panjang dari sisi c. Luasan ini akan kita gunakan untuk membuktikan rumus teorema Pythagoras, simak gambar berikut dengan melihat gambar tersebut maka HOME

6 Teorema Pythagoras HOME NEXT
Pythagoras menyatakan bahwa : “Untuk setiap segitiga siku-siku berlaku kuadrat panjang sisi miring (Hipotenusa) sama dengan jumlah kuadrat panjang sisi siku-sikunya.” jika c adalah panjang sisi miring/hipotenusa segitiga, a dan b adalah panjang sisi siku-siku. Berdasarkan teorema Pythagoras di atas maka diperoleh hubungan: c2 = a2 + b2 Dalil pythagoras di atas dapat diturunkan menjadi: a2 = c2 – b2 b2 = c2 – a2 Catatan : Dalam menentukan persamaan Pythagoras yang perlu diperhatikan adalah siapa yang berkedudukan sebagai hipotenusa/sisi miring. HOME NEXT

7 Dalam segitiga siku-siku di C
ILustrasi Dalam segitiga siku-siku di C Berlaku rumus: AB2 = BC2 + AC2 Atau A B C C2 = a b2 BACK NEXT

8 Menghitung Panjang sisi segitiga siku-siku
Pada suatu segitiga ABC siku-siku di titik A. panjang AB= 4 cm dan AC= 3 cm.  Hitunglah panjang BC! Jawab: BC2 = AC2 + AB2 BC2 = BC2 = BC2 = 25 BC  = 5 cm 2.  Panjang sisi siku-siku dalam segitiga siku-siku adalah 4x cm dan 3x cm. Jika panjang sisi hipotenusanya 20 cm. Tentukan nilai x. Jawab: AC2 = AB2 + BC2 202  = (4x)2 + (3x)2 400  = 16x2 + 9x2 400  = 25x2 16    = x2 4 = x BACK NEXT

9 Menentukan Jenis Segitiga jika Diketahui Panjang Sisinya dan Triple Pythagoras
1. Kebalikan Dalil Pythagoras Dalil pythagoras menyatakan bahwa dalam segitiga ABC, jika sudut A siku-siku maka berlaku a2= b2 + c2. Dalam    ABC, apabila a adalah sisi dihadapan sudut A, b adalah sisi dihadapan sudut B, c adalah sisi sihadapan sudut C, maka berlaku kebalikan Teorama Pythagoras, yaitu: Jika a2 = b2 + c2 maka     ABC siku-siku di A. Jika b2 = a2 +c2 maka    ABC siku-siku di B. Jika c2 = a2 + b2 maka    ABC siku-siku di C. BACK NEXT

10 Jika a2 = b2 + c2 maka ABC adalah segitiga siku-siku.
Dengan menggunakan prinsip kebalikan dalil Pythagoras, kita dapat menentukan apakah suatu segitiga merupakan segitiga lancip atau tumpul. Jika a2 = b2 + c2 maka     ABC adalah segitiga siku-siku. Jika a2 > b2 + c2 maka     ABC adalah segitiga tumpul. Jika a2 < b2 + c2 maka     ABC adalah segitiga lancip. BACK NEXT

11 Contoh Soal Tentukan jenis segitiga yang memiliki panjang sisi 5 cm, 7 cm dan 8 cm ? Jawab: dik : sisi terpanjang adalah 8 cm, maka a= 8cm, b = 7cm dan c = 5 cm a2 = 82 = 64 b2 + c2 = b2 + c2 = b2 + c2 = 74 karena a2 < b2 + c2, maka segitiga tersebut adalah segitiga lancip BACK NEXT

12 2. Triple Pythagoras Yaitu pasangan tiga bilangan bulat positif yang memenuhi kesamaan “kuadrat bilangan terbesar sama dengan jumlah kuadrat kedua bilangan yang lain.” Contoh : 3, 4 dan 5 adalah triple Pythagoras sebab, 52 = HOME

13 LATIHAN SOAL NEXT HOME C C A B
Segi tiga ABC siku-siku di titik A ,diketahui panjang AB = 3 cm dan AC = 4 cm,hitunglah panjang BC. Penyelesaian: BC2 = AB AC2 = = = 25 BC = √25 = 5 Jadi panjang BC = 5 Cm C A B 2. Segi tiga ABC siku-siku di titik A, diketahui panjang sisi miring BC = 10 cm, dan AB = 6 cm, hitunglah panjang sisi AC Penyelesaian: BC2 = AB2 + AC2 102 = AC2 100 = AC2 AC2 = = 64 AC = √64 = 8 Jadi panjang sisi AC = 8 Cm A B C NEXT HOME

14 3. Tentukan jenis segitiga yang memiliki panjang sisinya : 8cm, 7cm dan 12 cm Jawab: dik : sisi terpanjang adalah 12 cm, maka a= 12 cm, b = 7cm dan c = 8 cm a2 = 122 = 144 b2 + c2 = b2 + c2 = b2 + c2 = 113 karena a2 > b2 + c2, maka segitiga tersebut adalah segitiga tumpul HOME

15 Penerapan phytagoras dalam kehidupan sehari-hari
1. Penerapan dalam menyelesaikan soal Banyak soal baik dalam matematika dan fisika yang untuk menyelesaikannya perlu menggunakan rumus Pythagoras. Contoh soal Pythagoras. Tentukan diagonal ruang dari balok dengan panjang cm, lebar 4 cm, dan tinggi 5 cm. Untuk menentukan panjang diagonal ruang balok tersebut mau tidak mau kita harus menggunakan Pythagoras. Diagonal bidang =  √( ) =√25 = 5 cm Diagonal ruang = √( ) = √250 = 5√10 cm HOME NEXT

16 2. Penerapan dalam praktek nyata Penerapan teorema Pythagoras dilakukan di banyak bidang terutama bidang arsitektur. Arsitek menggunakannya untuk mengukur kemiringan bangunan, misalnya kemiringan sebuah tanggul agar mampu menahan tekanan air. Ini juga sangat membantu dalam menentukan biaya pembuatan bangunan. Seorang tukang kayu pun untuk membuat segitiga penguat pilar kayu menggunakan teorema Pythagoras HOME

17 Universitas swadaya gunung jati
Segala puji bagi allah yang masih memberikan kesehatan Dan kesempatannya kepada kami Sehingga kami dapat menyelesaikan powerpoint ini Dan terimakasih juga kepada pa dede tri kurniawan selaku dosen program komputer atas bimbingannya Demikianlah powerpoint yang kami buat semoga bermanfaat bagi orang yang membacanya dan menambah wawasan Dan penuliss mohon maaf apabila ada kesalahan dalam penulisan kata dan kalimat yang tidak jelas, mengerti, dan lugas mohon jangan dimasukkan ke dalam hati Dan kami juga sangat mengharapkan yang membaca powerpoint ini akan bertambah motivasinya dan mencapai cita-cita yang di inginkan Universitas swadaya gunung jati Fakultas keguruan dan ilmu pendidikan Tim kreatif Abda fajri rizki Akim fauzi Arief bachtiar Fiqhi yunda pratama Telah mempersembahkan Materi tentang Dalil pyhtagoras Sebagai bahan ajar Untuk Siswa/siswi Smp Kelas viii


Download ppt "SERBA SERBI PHYTAGORAS"

Presentasi serupa


Iklan oleh Google