Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

PENGGUNAAN INTEGRAL Menghitung luas suatu daerah yang dibatasi oleh kurva dan sumbu-sumbu koordinat. Menghitung volume benda putar. 9 Luas daerah di bawah.

Presentasi serupa


Presentasi berjudul: "PENGGUNAAN INTEGRAL Menghitung luas suatu daerah yang dibatasi oleh kurva dan sumbu-sumbu koordinat. Menghitung volume benda putar. 9 Luas daerah di bawah."— Transcript presentasi:

1 PENGGUNAAN INTEGRAL Menghitung luas suatu daerah yang dibatasi oleh kurva dan sumbu-sumbu koordinat. Menghitung volume benda putar. 9 Luas daerah di bawah kurva Volume benda putar yang diputar mengelilingi sumbu Y

2 Integral Tentu Luas Daerah Luas Daerah
Misalkan f adalah fungsi yang kontinyu pada selang [a, b] dan misalkan F adalah anti turunan dari f pada selang tersebut, maka berlaku : Untuk meringkas penulisan, F(b) – F(a) dinotasikan sebagai Teorema Dasar Kalkulus Hitunglah nilai dari Contoh 1 : Jawab = = 2(2)3 – 2(2)2 – [2(-1)3 – 2(-1)2] = 16 – = 12 Next Back Home

3 Menghitung Luas dengan Integral Luas Daerah Luas Daerah
Secara geometri definisi integral Riemaan di atas dapat diartikan sebagai luas daerah di bawah kurva y = f(x) pada interval [a, b]. Jumlah Luas Partisi Berubah Menjadi Integral y y Tentukan limitnya n   x a x b a b x Next Back Home

4 Menghitung Luas dengan Integral Luas Daerah Luas Daerah
Kegiatan pokok dalam menghitung luas daerah dengan integral tentu adalah: Gambar daerahnya. Partisi daerahnya Aproksimasi luas sebuah partisi Li  f(xi) xi Jumlahkan luas partisi L   f(xi) xi 5. Ambil limitnya L = lim  f(xi) xi 6. Nyatakan dalam integral xi y Li x xi a Next Back Home

5 Menghitung Luas dengan Integral Luas Daerah Luas Daerah
Hitunglah luas daerah tertutup yang dibatasi kurva y = x2, sumbu x, dan garis x = 3 Contoh 1. Jawab Langkah penyelesaian : Gambarlah daerahnya Partisi daerahnya Aproksimasi luasnya Li  xi2 xi 4. Jumlahkan luasnya L   xi2 xi Ambil limit jumlah luasnya L = lim  xi2 xi Nyatakan dalam integral dan hitung nilainya y xi Li x 3 xi Next Back Home

6 Menghitung Luas dengan Integral Luas Daerah Luas Daerah
Hitunglah luas daerah tertutup yang dibatasi kurva y = x2, sumbu Y, dan garis y = 4 Contoh 2. Jawab Langkah penyelesaian : Gambarlah daerahnya Partisi daerahnya Aproksimasi luasnya L  xi.y 4. Jumlahkan luasnya L   y. y Ambil limit jumlah luasnya L = lim  y. y Nyatakan dalam integral dan hitung nilainya y x 4 xi Next Back Home

7 Menghitung Luas dengan Integral Luas Daerah Luas Daerah
Hitunglah luas daerah tertutup yang dibatasi kurva y = 4x - x2, sumbu x, dan garis x = 6 Contoh 3. Jawab Langkah penyelesaian: Gambar dan Partisi daerahnya Aproksimasi : Li  (4xi - xi2)xi dan Aj  -(4xj - xj2)xj 3. Jumlahkan : L  (4xi - xi2)xi dan A   -(4xj - xj2)xj 4. Ambil limitnya L = lim  (4xi - xi2)xi dan A = lim  -(4xj - xj2)xj 5. Nyatakan dalam integral y xi Li xj x 6 4 xj xi Aj Next Back Home

8 Menghitung Luas dengan Integral Luas Daerah Luas Daerah
y x 6 4 xi Li xi xj Aj xj Next Back Home

9 Kesimpulan : Menghitung Luas dengan Integral Luas Daerah Luas Daerah
y y xi x y xi x Next Back Home

10 LUAS DAERAH ANTARA DUA KURVA
Menghitung Luas dengan Integral Luas Daerah Luas Daerah LUAS DAERAH ANTARA DUA KURVA Perhatikan kurva y = f(x) dan y = g(x) dengan f(x) > g(x) pada selang [a, b] di bawah ini. Dengan menggunakan cara : partisi, aproksimasi, jumlahkan, ambil limitnya, integralkan, maka dapat ditentukan luas daerah antara dua kurva tersebut. Langkah penyelesaian: Partisi daerahnya Aproksimasi : Li  [ f(x) – g(x) ] x 4. Jumlahkan : L   [ f(x) – g(x) ] x 5. Ambil limitnya : L = lim  [ f(x) – g(x) ] x 6. Nyatakan dalam integral tertentu y x Li x b a x Next Back Home

11 Menghitung Luas dengan Integral Luas Daerah Luas Daerah
Hitunglah luas daerah tertutup yang dibatasi kurva y = x2 dan garis y = 2 - x Contoh 4. Langkah penyelesaian: Gambar daerahnya Tentukan titik potong kedua kurva x2 = 2 – x  x2 + x – 2 = 0  (x + 2)(x – 1) = 0 diperoleh x = -2 dan x = 1 Partisi daerahnya Aproksimasi luasnya Li  (2 - x - x2)x 5. Nyatakan dalam integral tertentu Jawab y 1 2 3 4 5 x Li x x 1 2 -1 -2 -3 Next Back Home

12 Menghitung Luas dengan Integral Luas Daerah Luas Daerah
x 1 2 -1 -2 -3 y 3 4 5 Li x Next Back Home

13 Luas daerah = Menghitung Luas dengan Integral Luas Daerah Luas Daerah
Untuk kasus tertentu pemartisian secara vertikal menyebabkan ada dua bentuk integral. Akibatnya diperlukan waktu lebih lama untuk menghitungnya. y x Li x Ai x a b Luas daerah = Next Back Home

14 Menghitung Luas dengan Integral Luas Daerah Luas Daerah
Jika daerah tersebut dipartisi secara horisontal, maka akan diperoleh satu bentuk integral yang menyatakan luas daerah tersebut. Sehingga penyelesaiannya menjadi lebih sederhana dari sebelumnya. y d y Li x c Luas daerah = Next Back Home

15 Menghitung Luas dengan Integral Luas Daerah Luas Daerah
Hitunglah luas daerah di kuadran I yang dibatasi kurva y2 = x, garis x + y = 6, dan sumbu x Contoh 5. Jawab Langkah penyelesaian: Gambar daerahnya Tentukan titik potong kedua kurva y2 = 6 – y  y2 + y – 6 = 0  (y + 3)(y – 2) = 0 diperoleh y = - 3 dan y = 2 Partisi daerahnya Aproksimasi luasnya Li  (6 - y - y2)y 5. Nyatakan dalam integral tertentu y 6 2 y y Li Luas daerah = x 6 Next Back Home

16 Menghitung Luas dengan Integral Luas Daerah Luas Daerah
2 y 6 x Li y Luas daerah = Luas daerah = Luas daerah = Luas daerah = Home Back Next

17 Pendahuluan Volume Benda Putar Bola lampu di samping dapat dipandang sebagai benda putar jika kurva di atasnya diputar menurut garis horisontal. Pada pokok bahasan ini akan dipelajari juga penggunaan integral untuk menghitung volume benda putar.

18 Pendahuluan Volume Benda Putar Volume Benda Putar
Suatu daerah jika di putar mengelilingi garis tertentu sejauh 360º, maka akan terbentuk suatu benda putar. Kegiatan pokok dalam menghitung volume benda putar dengan integral adalah: partisi, aproksimasi, penjumlahan, pengambilan limit, dan menyatakan dalam integral tentu. Gb. 4 Home Next Back

19 Pendahuluan Volume Benda Putar Volume Benda Putar
Dalam menentukan volume benda putar yang harus diperhatikan adalah bagaimana bentuk sebuah partisi jika diputar. Berdasarkan bentuk partisi tersebut, maka metode yang digunakan untuk menentukan volume benda putar dibagi menjadi : Metode cakram Metode cincin Metode kulit tabung y x 1 2 -2 -1 3 4 Next Back Home

20 Metode Cakram Volume Benda Putar Volume Benda Putar
Metode cakram yang digunakan dalam menentukan volume benda putar dapat dianalogikan seperti menentukan volume mentimun dengan memotong-motongnya sehingga tiap potongan berbentuk cakram. Next Back Home

21 Metode Cakram Volume Benda Putar Volume Benda Putar
Bentuk cakram di samping dapat dianggap sebagai tabung dengan jari-jari r = f(x), tinggi h = x. Sehingga volumenya dapat diaproksimasi sebagai V  r2h atau V   f(x)2x. Dengan cara jumlahkan, ambil limitnya, dan nyatakan dalam integral diperoleh: V    f(x)2 x V = lim   f(x)2 x y x a x h=x x y x Next Back Home

22 Metode Cakram Volume Benda Putar Volume Benda Putar
Hitunglah volume benda putar yang terjadi jika daerah yang dibatasi kurva y = x2 + 1, sumbu x, sumbu y, garis x = 2 diputar mengelilingi sumbu x sejauh 360º. Contoh 7. Jawab 1 Langkah penyelesaian: Gambarlah daerahnya Buat sebuah partisi Tentukan ukuran dan bentuk partisi Aproksimasi volume partisi yang diputar, jumlahkan, ambil limitnya, dan nyatakan dalam bentuk integral. y y x 2 h=x x x x x Next Back Home

23 Metode Cakram Volume Benda Putar Volume Benda Putar
V  r2h V  (x2 + 1)2 x V   (x2 + 1)2 x V = lim  (x2 + 1)2 x y h=x x Next Back Home

24 Metode Cakram Volume Benda Putar Volume Benda Putar
Hitunglah volume benda putar yang terjadi jika daerah yang dibatasi kurva y = x2, sumbu y, garis y = 2 diputar mengelilingi sumbu y sejauh 360º. Contoh 8. Jawab Langkah penyelesaian: Gambarlah daerahnya Buatlah sebuah partisi Tentukan ukuran dan bentuk partisi Aproksimasi volume partisi yang diputar, jumlahkan, ambil limitnya, dan nyatakan dalam bentuk integral. y 2 y y x y h=y y x Next Back Home

25 Metode Cakram Volume Benda Putar Volume Benda Putar V  r2h
V  (y)2 y V   y y V = lim  y y x y h=y 2 Next Back Home

26 Metode Cincin Volume Benda Putar Volume Benda Putar
Metode cincin yang digunakan dalam menentukan volume benda putar dapat dianalogikan seperti menentukan volume bawang bombay dengan memotong-motongnya yang potongannya berbentuk cincin. Next Back Home

27 Metode Cincin Volume Benda Putar Volume Benda Putar
Menghitung volume benda putar dengan menggunakan metode cincin dilakukan dengan memanfaatkan rumus volume cincin seperti gambar di samping, yaitu V= (R2 – r2)h Gb. 5 h r R Next Back Home

28 Metode Cincin Volume Benda Putar Volume Benda Putar
Hitunglah volume benda putar yang terjadi jika daerah yang dibatasi kurva y = x2 dan garis y = 2x diputar mengelilingi sumbu x sejauh 360º. Contoh 9. Langkah penyelesaian: Gambarlah daerahnya Buat sebuah partisi Tentukan ukuran dan bentuk partisi Aproksimasi volume partisi yang diputar, jumlahkan, ambil limitnya, dan nyatakan dalam bentuk integral. Jawab y y y = 2x 4 2 x 2x x x2 x x Next Back Home

29 Metode Cincin Volume Benda Putar Volume Benda Putar V  (R2 – r2) h
V   [ (2x)2 – (x2)2 ] x V   (4x2 – x4) x V    (4x2 – x4) x V = lim   (4x2 – x4) x 4 y y = 2x 2 x x r=x2 R=2x y x Next Back Home

30 Metode Kulit Tabung Volume Benda Putar Volume Benda Putar
Metode kulit tabung yang digunakan untuk menentukan volume benda putar dapat dianalogikan seperti menentukan volume roti pada gambar disamping. Next Back Home

31 Metode Kulit Tabung Volume Benda Putar Volume Benda Putar
h h V = 2rhΔr Δr 2r Next Back Home

32 Metode Kulit Tabung Volume Benda Putar Volume Benda Putar
Hitunglah volume benda putar yang terjadi jika daerah yang dibatasi kurva y = x2 , garis x = 2, dan sumbu x diputar mengelilingi sumbu y sejauh 360º. Contoh 10. Jawab Langkah penyelesaian: Gambarlah daerahnya Buatlah sebuah partisi Tentukan ukuran dan bentuk partisi. Aproksimasi volume partisi yang diputar, jumlahkan, ambil limitnya, dan nyatakan dalam bentuk integral. y 1 2 3 4 x x2 x 1 2 x Next Back Home

33 Metode Kulit Tabung Volume Benda Putar Volume Benda Putar
x 1 2 x x2 y 3 4 x 1 2 y 3 4 x r = x h = x2 V  2rhx V  2(x)(x2)x V   2x3x V = lim  2x3x Next Back Home

34 Metode Kulit Tabung Volume Benda Putar Volume Benda Putar
Jika daerah pada contoh ke-10 tersebut dipartisi secara horisontal dan sebuah partisi diputar mengelilingi sumbu y, maka partisi tersebut membentuk cincin. Volume benda putar tersebut dihitung dengan metode cincin adalah sebagai berikut. V  (R2 – r2)y V  (4 - x2)y V   (4 – y)y V = lim  (4 – y)y x 1 2 y 3 4 y r=x R = 2 y 1 2 3 4 x 1 2 -2 -1 Home Back Next

35 Petunjuk : Kesempatan menjawab hanya 1 kali
Latihan Penggunaan Integral Penggunaan Integral Latihan (6 soal) Petunjuk : Kesempatan menjawab hanya 1 kali Home Next Back

36 Latihan Penggunaan Integral Penggunaan Integral
Soal 1. Luas daerah yang diarsir pada gambar di bawah ini dapat dinyatakan dalam bentuk integral sebagai .... X Y 2 4 A D B E C Home Back Next

37 Latihan Penggunaan Integral Penggunaan Integral
Soal 1. Luas daerah yang diarsir pada gambar di bawah ini dapat dinyatakan dalam bentuk integral sebagai .... X Y 2 4 A D B E C Jawaban Anda Benar  L  (4 – x2) x L   (4 – x2) x L = lim  (4 – x2) x ( Jawaban D ) Home Next Back

38 Latihan Penggunaan Integral Penggunaan Integral
Luas daerah yang diarsir pada gambar di bawah ini dapat dinyatakan dalam bentuk integral sebagai .... Soal 1. A B C D E X Y 2 4 x x 4 - x2 Jawaban Anda Salah  L  (4 – x2) x L   (4 – x2) x L = lim  (4 – x2) x ( Jawaban D ) Home Next Back

39 Latihan Penggunaan Integral Penggunaan Integral
Luas daerah yang diarsir pada gambar di bawah ini sama dengan …. A B C D E Soal 2. 4,5 satuan luas 6 satuan luas 7,5 satuan luas 9 1/3 satuan luas 10 2/3 satuan luas X Y Home Back Next

40 Latihan Penggunaan Integral Penggunaan Integral
Luas daerah yang diarsir pada gambar di bawah ini sama dengan …. A B C D E Soal 2. 4,5 satuan luas 6 satuan luas 7,5 satuan luas 9 1/3 satuan luas 10 2/3 satuan luas X Y Jawaban Anda Benar  L  (4 – x2) x L   (4 – x2) x L = lim  (4 – x2) x ( Jawaban E ) Home Next Back

41 Latihan Penggunaan Integral Penggunaan Integral
Luas daerah yang diarsir pada gambar di bawah ini sama dengan …. A B C D E Soal 2. 4,5 satuan luas 6 satuan luas 7,5 satuan luas 9 1/3 satuan luas 10 2/3 satuan luas X Y 2 -2 x x Jawaban Anda Salah  L  (4 – x2) x L   (4 – x2) x L = lim  (4 – x2) x ( Jawaban E ) Home Next Back

42 Latihan Penggunaan Integral Penggunaan Integral
Luas daerah yang diarsir pada gambar di bawah ini sama dengan …. A B C D E Soal 3. 5 satuan luas 7 2/3 satuan luas 8 satuan luas 9 1/3 satuan luas 10 1/3 satuan luas X Y Home Back Next

43 Latihan Penggunaan Integral Penggunaan Integral
Soal 3. Luas daerah yang diarsir pada gambar di bawah ini sama dengan …. X Y 2 A 5 satuan luas D 9 1/3 satuan luas B 7 2/3 satuan luas E 10 1/3 satuan luas C 8 satuan luas Jawaban Anda Benar  L  (8 – x2 -2x) x ( Jawaban D ) Home Next Back

44 Latihan Penggunaan Integral Penggunaan Integral
Luas daerah yang diarsir pada gambar di bawah ini sama dengan …. A B C D E Soal 3. 5 satuan luas 7 2/3 satuan luas 8 satuan luas 9 1/3 satuan luas 10 1/3 satuan luas X Y 2 Jawaban Anda Salah  L  (8 – x2 -2x) x ( Jawaban D ) Home Next Back

45 Latihan Penggunaan Integral Penggunaan Integral
Luas daerah yang dibatasi oleh kurva x = y2 dan garis x + y = 2 adalah …. A B C D E Soal 4. 2,5 satuan luas 4,5 satuan luas 6 satuan luas 10 2/3 satuan luas 20 5/6 satuan luas Home Back Next

46 Latihan Penggunaan Integral Penggunaan Integral
Luas daerah yang dibatasi oleh kurva x = y2 dan garis x + y = 2 adalah …. A B C D E Soal 4. 2,5 satuan luas 4,5 satuan luas 6 satuan luas 10 2/3 satuan luas 20 5/6 satuan luas X Y -2 1 Jawaban Anda Benar ( Jawaban B )  L  [(2 – y ) – y2 ] y Home Next Back

47 Latihan Penggunaan Integral Penggunaan Integral
Luas daerah yang dibatasi oleh kurva x = y2 dan garis x + y = 2 adalah …. A B C D E Soal 4. 2,5 satuan luas 4,5 satuan luas 6 satuan luas 10 2/3 satuan luas 20 5/6 satuan luas X Y -2 1 Jawaban Anda Salah ( Jawaban B )  L  [(2 – y ) – y2 ] y Home Next Back

48 Latihan Penggunaan Integral Penggunaan Integral
Daerah yang di arsir pada gambar di bawah ini diputar mengelilingi sumbu Y sebesar 360. Jika digunakan metode kulit tabung, maka bentuk integral yang menyatakan volume benda putar tersebut adalah .... A B C D E Soal 5. X Y 4 2 Home Back Next

49 Latihan Penggunaan Integral Penggunaan Integral
Daerah yang di arsir pada gambar di bawah ini diputar mengelilingi sumbu Y sebesar 360. Jika digunakan metode kulit tabung, maka bentuk integral yang menyatakan volume benda putar tersebut adalah .... A B C D E Soal 5. X Y 4 2 Jawaban Anda Benar ( Jawaban D )  V  2xx x Home Next Back

50 Latihan Penggunaan Integral Penggunaan Integral
Daerah yang di arsir pada gambar di bawah ini diputar mengelilingi sumbu Y sebesar 360. Jika digunakan metode kulit tabung, maka bentuk integral yang menyatakan volume benda putar tersebut adalah .... A B C D E Soal 5. X Y 4 2 x Jawaban Anda Salah ( Jawaban D )  V  2xx x Home Next Back

51 Latihan Penggunaan Integral Penggunaan Integral
Daerah yang di arsir pada gambar di bawah ini diputar mengelilingi sumbu X sebesar 360. Volume benda putar yang terjadi adalah …. A B C D E Soal 6. 4 satuan volum 6 satuan volum 8 satuan volum 12 satuan volum 15 satuan volum X Y 4 2 Home Back Next

52 Latihan Penggunaan Integral Penggunaan Integral
Daerah yang di arsir pada gambar di bawah ini diputar mengelilingi sumbu X sebesar 360. Volume benda putar yang terjadi adalah …. A B C D E Soal 6. 4 satuan volum 6 satuan volum 8 satuan volum 12 satuan volum 15 satuan volum X Y 4 2 Jawaban Anda Benar ( Jawaban C )  V  (x)2 x Home Back Next

53 Latihan Penggunaan Integral Penggunaan Integral
Daerah yang di arsir pada gambar di bawah ini diputar mengelilingi sumbu X sebesar 360. Volume benda putar yang terjadi adalah …. A B C D E Soal 6. 4 satuan volum 6 satuan volum 8 satuan volum 12 satuan volum 15 satuan volum X Y 4 2 x Jawaban Anda Salah ( Jawaban C )  V  (x)2 x Home Back Next


Download ppt "PENGGUNAAN INTEGRAL Menghitung luas suatu daerah yang dibatasi oleh kurva dan sumbu-sumbu koordinat. Menghitung volume benda putar. 9 Luas daerah di bawah."

Presentasi serupa


Iklan oleh Google