Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
BAB I. BESARAN DAN SATUAN
A. BESARAN 1. PENGERTIAN BESARAN Besaran didefinisikan sebagai sesuatu yang dapat diukur dan dapat dinyatakan dengan angka-angka. 2. PENGERTIAN SATUAN Satuan adalah sebagai pembanding suatu besaran dan dinyatakan dengan angka. 3. PENGERTIAN DIMENSI Dimensi suatu besaran menunjukkan cara besaran itu tersusun dari besaran-besaran pokok.
2
Kembali membahas besaran, Besaran dibagi menjadi dua, yaitu besaran pokok dan besaran turunan.
Besaran Pokok adalah baik besaran maupun satuannya telah ditetapkan terelebih dahulu dan tidak diturunkan dari besaran lain. Ada 7 jenis Besaran Pokok yaitu : NO BESARAN POKOK LAMBANG SATUAN DIMENSI 1 PANJANG l Meter L 2 MASSA m Kilogram M 3 WAKTU t Sekon T 4 KUAT ARUS LISTRIK I Ampere 5 SUHU Kelvin θ 6 JUMLAH ZAT N Mol 7 INTENSITAS CAHAYA ζ Kandela J
3
Besaran Turunan adalah :
Besaran yang diturunkan dari besaran pokok. Contoh Besaran Turunan : NO BESARAN TURUNAN RUMUS SATUAN DIMENSI 1 LUAS panjang x panjang 2 m 2 L 2 VOLUME panjang x panjang x panjang 3 3 3 KECEPATAN panjang / waktu -1 ms -1 LT 4 PERCEPATAN kecepatan / waktu -2 5 GAYA massa x percepatan -2 kgms -2 MLT 6 USAHA gaya x panjang 2 -2 kgm s 2 -2 ML T 7 ENERGI massa x panjang x percepatan 2 -2 2 -2 8 DAYA usaha / waktu 2 -3 2 -3 9 TEKANAN gaya / luas -1 -2 kgm s -1 -2 10 MASSA JENIS massa / volume -3 kgm -3 ML 11 MOMENTUM massa x kecepatan -1 -1 12 IMPULS gaya x waktu -1 -1
4
Drs. Jo 1.3 AWALAN SATUAN NO AWALAN LAMBANG KELIPATAN 1 TERA T 12 10 2
12 10 2 GIGA G 9 3 MEGA M 6 4 KILO K 3 5 PIKO P -12 6 NANO N -9 7 MIKRO m -6 8 MILI -3 9 SENTI c -2 DESI d -1 NO AWALAN LAMBANG KELIPATAN 1 TERA T 12 10 2 GIGA G 9 3 MEGA M 6 4 KILO k 3 5 PIKO p -12 6 NANO n -9 7 MIKRO m -6 8 MILI -3 9 SENTI c -2 DESI d -1
5
1.4 NOTASI ILMIAH Bentuk baku penulisan notasi ilmiah adalah : a,... X 10n Di mana : a adalah bilangan asli mulai dari 1 sampai dengan 9 n disebut eksponen dan merupakan bilangan bulat. Contoh : 0, cm = 6,2 X 10-5 cm 0, m = 7,25 X 10-6 m km = 4,5 X 107 Km kg = 8,3 X 105 kg
6
1.5 ANGKA PENTING Angka penting adalah angka yang didapat dari hasil pengukuran Ciri khas dari Angka penting adalah ada satuannya. Penting disini artinya penting diingat dan dicatat. ATURAN - ATURAN ANGKA PENTING : (Contoh : ) 1. Semua angka bukan nol adalah angka penting. Angka nol yang terletak diantara dua angka bukan nol termasuk angka penting. (Contoh : ) Semua angka nol yang terletak pada deretan akhir dari angka-angka bukan nol yang ditulis di belakang koma desimal termasuk angka penting. (Contoh :) Angka - angka nol yang digunakan hanya untuk tempat titik desimal adalah bukan angka penting. (Contoh :) Bilangan-bilangan puluhan, ratusan, dst yang memiliki angka nol pada deretan akhir harus dituliskan dalam notasi ilmiah agar jelas apakah angka-angka tersebut adalah angka penting atau bukan. (Contoh : ) (Ke aturan berhitung dengan angka penting)
7
234,6 g memiliki empat angka penting (Pakai aturan 1)
(Kembali ke aturan angka penting)
8
25004 kg memiliki lima angka penting (Pakai aturan 2)
(Kembali ke aturan angka penting)
9
0,0050 kg memiliki dua angka penting (Pakai aturan 3)
(Kembali ke aturan angka penting)
10
0,004 kg memiliki satu angka penting (Pakai aturan 4)
(Kembali ke aturan angka penting)
11
7500 ditulis 7,5 x 103 = memiliki dua angka penting (Pakai aturan 5) 7500 ditulis 7,50 x 103 = memiliki tiga angka penting (Pakai aturan 5) 7500 ditulis 7,500 x 103 = memiliki empat angka penting (Pakai aturan 5) (Kembali ke aturan angka penting)
12
ATURAN BERHITUNG DENGAN ANGKA PENTING :
a. Pembulatan : Dalam ketentuan operasi angka penting berlaku syarat-syarat pembulatan berikut ini : * Jika lebih dari 5 (lima), dibulatkan ke atas. Jika kurang dari 5 (lima) dihilangkan. * Jika tepat 5 (lima) dan angka sebelumnya bilangan ganjil maka dibulatkan keatas. Namun bila angka sebelumnya merupakan bilangan genap maka dibulatkan ke bawah. Contoh : 4,638 menjadi 4,64 (angka 8 lebih dari 5 dibulatkan ke atas) 7,823 menjadi 7,82 (angka 3 lebih kecil dari 5 dihilangkan) 2,475 menjadi 2,48 (angka 5 dibulatkan ke atas sebab angka sebelumnya 7 ganjil) 9,265 menjadi 9,26 (angka 5 dibulatkan ke bawah sebab angka sebelumnya genap)
13
b. Operasi Penjumlahan / Pengurangan :
Hasil operasi penjumlahan / pengurangan dengan bilangan penting hanya boleh mengandung satu angka yang diragukan/taksiran/dikira-kira. Angka yang diragukan/taksiran/dikira-kira adalah : angka yang terleletak paling ujung atau paling belakang dari deretan angka-angka. Contoh : 23, angka 6 adalah angka taksiran karena berada paling ujung dan diberi tanda garis bawah pada angka 6. 46, angka 8 adalah angka taksiran karena berada paling ujung dan diberi tanda garis bawah pada angka 8. Kembali ke hasil operasi penjumlahan / pengurangan dengan bilangan penting hanya boleh mengandung satu angka yang diragukan/taksiran/dikira-kira. 38,534 m 6,2 m + 44,734 m 44,7 m 92, m 35, m - 56, m 56, m Contoh : Dibulatkan menjadi 44,7 karena harus ada 1 angka taksiran yaitu angka 7 Dibulatkan menjadi 56,3 karena harus ada 1 angka taksiran yaitu angka 3, angka 3 hasil pembulatan.dari 2 ditambahkan 1 menjadi 3 karena disebelah kanan 2 ada angka 8 yang lebih dari 5.
14
c. Operasi Perkalian / Pembagian :
Hasil operasi Perkalian / Pembagian dari angka penting, penulisan hasilnya yaitu : jumlah angka pentingnya harus sama dengan jumlah angka penting pada komponen perkalian yang memiliki angka penting paling sedikit. Contoh : 38,534 m memiliki 5 angka penting 6,2 m memiliki 2 angka penting X 238,9108 m memiliki 7 angka penting, dibulatkan menjadi 240 m2 jadi nulisnya harus memiliki 2 angka penting yaitu : 24 x m2 38,534 m memiliki 5 angka penting 6,2 m memiliki 2 angka penting : 6,21516 m memiliki 6 angka penting, jadi nulisnya harus memiliki 2 angka penting yaitu : 6, m
15
d. Operasi Perkalian / Pembagian dengan bilangan eksak
Hasil operasi Perkalian / Pembagian dengan angka eksak penulisan hasilnya yaitu : jumlah angka pentingnya harus sama dengan jumlah angka penting pada komponen angka penting itu sendiri. Angka eksak adalah : angka yang tidak memiliki satuan. Contoh : 2, 7, 13, , dst Contoh : 27,62 m memiliki 4 angka penting 13 X 359,06 m memiliki 5 angka penting, jadi nulisnya harus memiliki 4 angka penting yaitu : 359, m 456,83 m memiliki 5 angka penting 72 : 32891,76 m memiliki 7 angka penting, jadi nulisnya harus memiliki 5 angka penting yaitu : m
16
e. Operasi Pengakaran : Hasil operasi Pengakaran dari angka penting ditulis hasilnya yaitu : jumlah angka pentingnya harus sama dengan jumlah angka penting bilangan yang diakarkan. Contoh : m2 = memiliki 2 angka penting = 4,89 m memiliki 3 angka penting Hasilnya harus ditulis sama dengan jumlah angka penting bilangan yang diakarkan , yaitu nulisnya harus memiliki 2 angka penting, jadi ditulisnya : 4,9 m m2 = memiliki 3 angka penting = 19,183 m memiliki 5 angka penting Hasilnya harus ditulis sama dengan jumlah angka penting bilangan yang diakarkan , yaitu nulisnya harus memiliki 3 angka penting, jadi ditulisnya : 19,2 m
17
: 10 KONVERSI SATUAN Km Contoh : hm 5 Km = …….... m ? Jawab :
5 Km = 5 X 1000 dam = 5000 m : 10 m = 5 X 103 m X 10 16 cm = …….... m ? dm Jawab : 16 cm = 16 / 100 cm = 0,16 m = 1,6 X 10-1 m mm …….... cm2 ? 12 m2 = …….... m2 ? 38 mm2 = Jawab : 12 m2 = 12 X 10000 Jawab : 38 mm2 = 38 / = cm2 = 0, m2 = 1,2 X 105 cm2 = 3,8 X 10-5 m2
18
Contoh : …….... m/s ? 1. 72 Km/jam = Jawab : 72 Km/jam = 72 X 1000 m 3600 s 72000 m 3600 s = = 20 m/s …….... km/jam ? 2. 24 m/s = 1 / km 1 / jam 24 1000 3600 1 Jawab : 24 m/s = 24 X = X 864 10 = = 86,4 km/jam …….... kg/m3 ? 3. 0,6 g/cm3 = 0,6 1000 1 / kg 1 / m3 1 X Jawab : 0,6 g/cm3 = 0,6 X = = 0,6 X 1000 = 600 kg/m3 8,9 N/cm2 = …….... N/m2 ? 4. 1 N 1/ m2 10000 1 89000 N/m2 = 8,9 X = 8,9 N/cm2 = 8,9 X Jawab :
19
Thank You
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.