Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehDahlia Kancil Telah diubah "10 tahun yang lalu
1
Bab 13A Nonparametrik: Data Peringkat I
2
------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------------------- Bab 13A NONPARAMETRIK: DATA PERINGKAT I A. Pendahuluan 1. Data Statistika Statistika nonparametrik ini menggunakan peringkat sebagai data Dalam hal ini, data diurut ke dalam peringkat, baik peringkat naik maupun peringkat turun Peringkat dinyatakan dalam bentuk urutan dengan aturan tertentu
3
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- 2. Peringkat pada Data Ada dua macam peringkat yakni peringkat naik dan peringkat turun Peringkat naik beranjak dari data terkecil menaik ke data terbesar Peringkat turun beranjak dari data terbesar menurun ke data terkecil Setiap data diberi angka urutan dan angka urutan itu merupakan data peringkat Ada kalanya ada data yang sama besar sehingga mereka menduduki peringkat sama
4
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- 3. Tanpa Peringkat Sama Pemberian peringkat pada data yang tidak memiliki peringkat sama Contoh 1 Data13 19 23 15 17 11 18 Urutan Peringkat Data Naik Data Turun 11 1 23 1 13 2 19 2 15 3 18 3 17 4 17 4 18 5 15 5 19 6 13 6 23 7 11 7
5
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 2 (dikerjakan di kelas) Susunlah dalam peringkat naik dan turun data berikut ini 75 81 65 72 69 77 66 79 Contoh 3 Susunlah dalam peringkat naik dan turun data berikut ini (a) 3,52 2,34 3,71 2,75 2,96 3,38 2,88 2,53 2,99 3,05 3,41 2,48 3,32 (b) 175 189 201 193 182 196 179 195 188 190 177
6
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- 3. Dengan Peringkat Sama Pemberian peringkat pada data yang mengandung data sama Data sama diberi peringkat sama yang merupakan rerata di antara mereka Cara pemberian peringkat Data disusun dalam urutan naik atau turun Secara berurut, data diberi peringkat Peringkat pada data sama direratakan Data sama itu kemudian diberikan peringkat rerata itu
7
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Misalnya Data Peringkat Peringkat sementara tetap 5 1 2 5 2 2 5 3 2 Rerata dari peringkat 1, 2, dan 3 adalah 2 Mereka semuanya diberi peringkat 2
8
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 4 Menyusun dalam peringkat naik dan turun, data sebagai berikut 6, 7, 2, 6, 5, 5, 7, 5, 4, 7, 3, 8 Urutan Peringkat naik Urutan Peringkat turun data sem tetap data sem tetap 2 1 1 8 1 1 3 2 2 7 2 3 4 3 3 7 3 3 5 4 5 7 4 3 5 5 5 6 5 5,5 5 6 5 6 6 5,5 6 7 7,5 5 7 8 6 8 7,5 5 8 8 7 9 10 5 9 8 7 10 10 4 10 10 7 11 10 3 11 11 8 12 12 2 12 12
9
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 5 (dikerjakan di kelas) Susunlah ke dalam peringkat data berikut ini 20 11 25 20 14 22 16 20 14 18 17 18 14 18 20 Contoh 6 Susunlah ke dalam peringkat data berikut ini (a) 3,00 2,63 2,75 2,12 2,75 3,00 2,90 2,63 2,75 3,24 2,75 2,52 (b) 525 420 540 510 414 480 500 420 525 510 485 550
10
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- B. Korelasi Spearman 1. Pendahuluan Data peringkat dapat digunakan untuk menghitung koefisien korelasi Spearman Dasar dari koefisien korelasi Spearman adalah selisih peringkat di antara pasangan data Apabila terdapat peringkat sama, maka terdapat rumus koreksi dalam perhitungan koefisien korelasi Spearman Pegujian hipotesis juga mengenal sampel besar dan sampel kecil
11
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- 2. Jenis Koefisien Korelasi Spearman Koefisien korelasi Tanpa peringkat sama Ada peringkat sama (ada koreksi) Pengujian hipotesis Uji pada sampel besar (n > 30) Uji pada sampel kecil (n 30)
12
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- 3. Koefisien Korelasi Tanpa Peringkat Sama Rumus umum koefisien korelasi Spearman tanpa peringkat sama Data X dan Y dinyatakan dalam peringkat masing-masing Selisih peringkat adalah d = X Y X 1 Y 1 d 1 d 2 1 Koefisien korelasi X 2 Y 2 d 2 d 2 2 Spearman X 3 Y 3 d 3 d 2 3.... Populasi.... X i Y i d i d 2 i.... Sampel.... X n Y n d n d 2 n
13
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 7 Koefisien korelasi Spearman untuk sampel data X 34 33 31 35 32 36 Y 43 45 42 46 41 44 Data Peringkat d d 2 X Y X Y 31 42 1 2 –1 1 32 41 2 1 1 1 33 45 3 5 – 2 4 34 43 4 3 1 1 35 46 5 6 – 1 1 36 44 6 4 2 4 n = 6 Jumlah 12
14
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 8 (dikerjakan di kelas) Hitunglah koefisien korelasi Spearman untuk sampel data berikut X 30 17 35 28 42 25 19 29 Y 35 31 43 46 50 32 33 42 Contoh 9 Hitunglah koefisien korelasi Spearman untuk sampel data berikut (a) X 6,3 5,8 6,1 6,9 3,4 1,8 9,4 4,7 7,2 2,4 Y 5,3 8,6 4,7 4,2 4,9 6,1 5,1 6,3 6,8 5,2 (b) X 5,0 8,0 2,0 4,0 3,0 7,0 1,0 6,0 Y 1,0 6,0 4,5 2,0 7,0 8,0 4,0 3,0
15
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 10 Hitunglah koefisien korelasi Spearman untuk sampel data berikut (a) X 64 63 61 65 62 66 Y 23 25 22 26 21 24 (b) X 3 2 5 9 1 10 8 4 7 6 Y 4 1 6 7 3 10 9 2 5 8 (c) X 82 98 87 40 116 113 111 83 85 126 106 117 Y 42 46 39 37 65 88 86 56 62 92 54 81 (d) X 5,0 8,0 2,0 4,0 3,0 7,0 1,0 6,0 Y 1,0 6,0 4,5 2,0 7,0 8,0 4,0 3,0
16
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- 3. Koefisien Korelasi Dengan Peringkat Sama Banyaknya data dalam satu peringkat sama dinyatakan sebagai t Koreksi peringkat sama menjadi sehingga melalui koreksi Koefisien korelasi Spearman untuk sampel menjadi
17
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 11 Pasangan data adalah Data Peringkat d d 2 X Y X Y X Y 0 42 1,5 3 1,5 2,25 0 42 0 46 1,5 4 2,5 6,25 0 46 1 39 3,5 2 1,5 2,25 1 39 1 37 3,5 1 2,5 6,25 1 37 3 65 5 8 3 9 3 65 4 88 6 11 5 25 4 88 5 86 7 10 3 9 5 86 6 56 8 6 2 4 6 56 7 62 9 7 2 4 7 62 8 92 10,5 12 1,5 2,25 8 92 8 56 10,5 5 5,5 30,25 8 56 12 41 12 9 3 9 12 41 d 2 = 109,50
18
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Koreksi peringkat sama terdapat hanya pada X Peringkat t t 3 T = (t 3 – t) / 12 1,5 2 8 0,5 3,5 2 8 0,5 10,5 2 8 0,5 Σ T X = 1,5 sehingga dan koefisien korelasi Spearman untuk sampel
19
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 12 (dikerjakan di kelas) Hitunglah koefisien korelasi Spearman untuk sampel data berikut X 7 18 17 4 21 27 20 14 15 10 Y 5 2 4 4 3 2 4 5 4 6 Contoh 13 Hitunglah koefisien korelasi Spearman untuk sampel data berikut (a) X 60 37 30 20 24 42 39 54 48 58 26 Y 2 7 6 9 7 4 8 2 4 3 8 (b) X 4 3 4 3 6 7 1 5 5 2 Y 4 2 6 5 7 9 1 8 10 3
20
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 14 Hitunglah koefisien korelasi Spearman untuk sampel data berikut (a) X 4 3 4 3 6 7 1 5 5 2 Y 3,4 3,2 3,5 3,0 2,9 3,4 2,5 3,9 3,6 3,0 (b) X 6 6 6 6 6 7 9 10 10 10 11 12 15 15 18 23 Y 23 46 46 47 94 80 133 81 114 274 260 378 197 234 1035 1065
21
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- C. Pengujian Hipotesis Korelasi Spearman 1. Pendahuluan Pengujian hipotesis dilakukan terhadap koefisien korelasi Spearman Pengujian hipotesis dapat berbentuk s > 0, s < 0, atau s ≠ 0 Distribusi probabilitas pensampelan bergantung kepada ukuran sampel Pada urukan sampel besar (n > 30), distribusi probabilitas pensampelan berbentuk t-Student Pada ukuran sampel kecil (n 30), disediakan tabel nilai kritis khusus untuk taraf signifikansi tertentu
22
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------ 2. Pengujian hipotesis Pada sampel besar (n > 30) pengujian hipotesis terjadi pada DPP : DP t-Student dengan kekeliruan baku derajat kebebasan = n – 2 Pada sampel kecil (n 30) pengujian hipotesis menggunakan Tabel khusus
23
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- 3. Uji Hipotesis pada Sampel Besar Bentuk hipotesis H 0 : s = 0 H 1 : s > 0 s < 0 s ≠ 0 Distribusi probabilitas pensampelan Distribusi probabilitas t-Student dengan statistik uji t dan derajat kebebasan = n 2
24
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 15 Pada taraf signifikansi 0,05, uji apakah koefisien korelasi peringkat Spearman adalah positif, jika sampel menjukkan n = 40 r s = 0,42 Hipotesis H 0 : s = 0 H 1 : s > 0 Sampel n = 40 r s = 0,42
25
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Distribusi probabilitas pensampelan Distribusi probabilitas t-Student Derajat kebebasan = n 2 = 40 2 = 38 Statistik uji Kriteria pengujian Taraf signifikansi 0,05 Pengujian ujung atas Nilai kritis t (0,95)(38) = 1,686 Tolak H 0 jika t > 1,686 Terima H 0 jika t 1,686 Keputusan Pada taraf sifnifikansi 0,05, tolak H 0
26
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 16 Pada taraf sifnifikansi 0,05, uji apakah koefisien korelasi peringkat Spearman negatif jika sampel acak menunjukkan n = 35 r s = 0,30 Hipotesis H 0 : s = 0 H 1 : s < 0 Sampel n = 35 r s = 0,30 Distribusi probabilitas pensampelan Distribusi probabilitas t-Student Derajat kebebasan = n 2
27
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Statistik uji = n 2 = 35 2 = 33 Kriteria pengujian Taraf signifikansi 0,05 Pengujian ujung bawah Nilai kritis t (0,05)(33) = 1,692 Tolak H 0 jika t < 1,692 Terima H 0 jika t 1,692 Keputusan Pada taraf signifikansi 0,05 tolak H 0
28
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 17 Pada taraf sifnifikansi 0,05, uji apakah koefisien korelasi peringkat Spearman tidak sama dengan nol jika sampel acak menunjukkan n = 50 r s = 0,25 Hipotesis ▪ Distribusi probabilitas pensampelan H 0 : s = 0 Distribusi probabilitas t-Student H 1 : s ≠ 0 Derajat kebebasan = n 2 Sampel n = 50 r s = 0,25
29
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Statistik uji = n 2 = 50 2 = 48 Kriteria pengujian Taraf signifikansi 0,05 Pengujian dua ujung Nilai kritis t (0,025)(48) = 2,011 t (0,975)(48) = 2,011 Tolak H 0 jika t 2,011 Terima H 0 jika 2,011 t 2,011 Keputusan Pada taraf signifikansi 0,05 terima H 0
30
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 13 Pada taraf signifikansi 0,05, uji s > 0 untuk sampel acak n = 36 r s = 0,37 Contoh 14 Pada taraf signifikansi 0,05, uji s > 0 untuk sampel acak (a) n = 90 r s = 0,15 (b) n = 55 r s = 0,77 (c) n = 65 r s = 0,49
31
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 15 Pada taraf signifikansi 0,05, uji s > 0 untuk sampel acak (a) n = 38 r s = 0,41 (b) n = 66 r s = 0,29 (c) n = 76 r s = 0,19 (d) n = 45 r s = 0,33 Contoh 16 Pada taraf signifikansi 0,05, uji s ≠ 0 untuk sampel acak (a) n = 48 r s = 0,34 (b) n = 62 r s = 0,26 (c) n = 28 r s = 0,17 (d) n = 44 r s = 0,24
32
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- 4. Uji Hipotesis pada Sampel Kecil Sampel adalah kecil jika 4 n 30 Pengujian hipotesis dilakukan dengan membandingkan r s dengan tabel khusus nilai kritis yang mencakup nilai pada taraf signifikansi 0,01 dan 0,05 Kriteria pengujian untuk korelasi positif Tolak H 0 jika r s > r tabel Terima H 0 jika r s r tabel Kriteria pengujian untuk korelasi negatif Tolak H 0 jika r s < r tabel Terima H 0 jika r s r tabel Kriteria pengujian untuk korelasi ≠ 0, disesuaikan dengan taraf signifikansi 2
33
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Tabel Nilai Kritis untuk Koefisien Korelasi Peringkat Spearman n = 0,05 = 0,01 4 1,000 5 0,900 1,000 6 0,829 0,943 7 0,714 0,893 8 0,643 0,833 9 0,600 0,783 10 0,564 0,746 12 0,506 0,712 14 0,456 0,645 16 0,425 0,601 18 0,399 0,564 20 0,377 0,534 22 0,359 0,508 24 0,343 0,485 26 0,329 0,465 28 0,317 0,448 30 0,306 0,432
34
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 17 Dari contoh 7 dengan n = 6 dan r s = 0,657 apabila diuji pada = 0,05 untuk s > 0, diperoleh Hipotesis ▪ Kriteria pengujian H 0 : s = 0 H 1 : s > 0 Taraf signifikansi 0,05, r (0,05)(6) = 0,829 Sampel Tolak H 0 jika r s > 0,829 Terima H 0 jika r s 0,829 n = 6 r s = 0,657 ▪ Keputusan Pada taraf signifikansi 0,05 terima H 0
35
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 18 (dikerjakan di kelas) Pada taraf signifikansi 0,05, uji hipotesis bahwa s > 0 untuk sampel X 30 17 35 28 42 25 19 29 Y 35 31 43 46 50 32 33 42 Contoh 19 Pada taraf signifikansi 0,02, uji hipotesis bahwa s 0 untuk sampel (a) X 6,3 5,8 6,1 6,9 3,4 1,8 9,4 4,7 7,2 2,4 Y 5,3 8,6 4,7 4,2 4,9 6,1 5,1 6,3 6,8 5,2 (b) X 5,0 8,0 2,0 4,0 3,0 7,0 1,0 6,0 Y 1,0 6,0 4,5 2,0 7,0 8,0 4,0 3,0
36
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------ Contoh 20 Pada taraf signifikansi 0,05, uji hipotesis bahwa s < 0 untuk sampel (a) X 7 18 17 4 21 27 20 14 15 10 Y 5 2 4 4 3 2 4 5 4 6 (b) X 60 37 30 20 24 42 39 54 48 58 26 Y 2 7 6 9 7 4 8 2 4 3 8 (b) X 4 3 4 3 6 7 1 5 5 2 Y 4 2 6 5 7 9 1 8 10 3
37
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- D. Koefisien Korelasi Peringkat Kendall 1. Pendahuluan Korelasi dilakukan terhadap peringkat nilai yang diberikan oleh dua penilai, misalkan, penilai X dan penilai Y Salah satu nilai, misalnya, dari X disusun dalam urutan peringkat naik; nilai lainnya mengikutinya Peringkat pada setiap nilai dari satu penilai diperbandingkan secara berpasangan; jika urutan adalah naik diberi +1 dan jika urutan adalah turun diberi 1 Peringkat 1 2 (naik) + 1 (konkordansi) Peringkat 4 1 (turun) 1 (diskordansi) Semua data perlu diubah menjadi peringkat
38
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- 2. Perhitungan Urutan Untuk penilai X, perbandingan berpasangan 1 2 3 4 Obyek a b c d Peringkat X 1 2 3 4 Urutan Urutan 1 2 (naik) +1 Urutan 1 3 (naik) +1 Urutan 1 4 (naik) +1 + 3 Urutan 2 3 (naik) +1 Urutan 2 4 (naik) +1 + 2 Urutan 3 4 (naik) +1 + 1 Jumlah s X = +6 + 6 Dengan rumus s = ½ n (n 1)
39
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Untuk penilai Y, perbandingan berpasangan Obyek a b c d 2 4 3 1 Peringkat Y 2 4 3 1 Urutan Urutan 2 4 (naik) +1 Urutan 2 3 (naik) +1 Urutan 2 1 (turun) 1 +1 Urutan 4 3 (turun) 1 Urutan 4 1 (turun) 1 2 Urutan 3 1 (turun) 1 1 Jumlah s Y = 2 2
40
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Prosedur umum Salah satu data, misalnya X, diurut naik Data lainnya, misalnya Y, mengikuti pasangannya Pada Y terdapat Urut naik disebut konkordansi + 1 Jumlah konkordansi = n k Urut turun disebut diskordansi – 1 Jumlah diskordansi = n d Peringkat sama 0 Pada Y terdapat s dengan s = n k – n d = (n k – n d )/ [½ n (n – 1)]
41
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- 3. Koefisien korelasi Kendall Tanpa Peringkat Sama Contoh 21 Obyek a b c d Peringkat X 1 2 3 4 s X = 6 Peringkat Y 2 4 3 1 s Y = 2 Rumus koefisien korelasi Kendall adalah s = s Y / s X Jika nilai dari penilai X disusun dalam peringkat naik maka s X = ½ n (n 1) = ½ (4)(4 – 1) = 6 Melalui perbandingan berpasangan, dengan +1 untuk naik dan 1 untuk turun, s Y dihitung dari sampel yang ada Pada contoh di atas s = 2 / 6 = 0,33
42
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 22 Penilai X dan Y menilai 6 obyek. Hasil penilaian disusun dalam pereingkat adalah Obyek a b c d e f Peringkat X 1 2 3 4 5 6 Peringkat Y 6 4 2 1 3 5 Urutan pada peringkat X s X = ½ n (n 1) = (½)(6)(5) = 15 Urutan pada peringkat Y (konkordansi – diskordansi) s Y = (0 – 5) + (1 – 3) + (2 – 1) + (2 – 0) +(1 – 0) = 3 Koefisien korelasi Kendall s = 3 / 15 = 0,20
43
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Dapat juga dihitung dengan cara berikut Pering- Pering- Konkor- Diskor- kat X kat Y dansi dansi 1 6 0 5 2 4 1 3 n k = 5 n d = 9 s = n k – n d = – 3 3 2 2 1 4 1 2 0 5 3 1 0 6 5 5 9 = s / [ ½ n (n – 1)] = – 3 / [ ½ (6)(6 – 1)] = – 0,20
44
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 23 (dikerjakan di kelas) Penilai X dan Y menilai enam obyek sebagai berikut Obyek a b c d e f Penilai X 4 3 1 5 2 6 Penilai Y 3 5 2 6 1 4 Hitunglah koefisien korelasi Kendall
45
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 24 Hitunglah koefisien korelasi Kendall untuk sampel data berikut (a) X 64 63 61 65 62 66 Y 23 25 22 26 21 24 (b) X 3 2 5 9 1 10 8 4 7 6 Y 4 1 6 7 3 10 9 2 5 8 (c) X 82 98 87 40 116 113 111 83 85 126 106 117 Y 42 46 39 37 65 88 86 56 62 92 54 81 (d) X 5,0 8,0 2,0 4,0 3,0 7,0 1,0 6,0 Y 1,0 6,0 4,5 2,0 7,0 8,0 4,0 3,0
46
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- 4. Koefisien Korelasi Kendall dengan Peringkat Sama Salah satu data, misalnya X, diurut naik dan data lainnya, misalnya Y, mengikuti pasangannya Pada Y dihitung s = n k - n d Jika terdapat peringkat sama maka perlu dilakukan koreksi peringkat sama Jika pada satu peringkat sama terdapat t data maka koreksi peringkat sama adalah T = ½ Σ t (t – 1) Koefisien korelasi Kendall dengan koreksi peringkat sama adalah
47
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 25 Penilai X dan Y menilai enam obyek. Disusun dalam peringkat, penilaian mereka adalah Obyek a b c d e f Peringkat X 1 2 3 4 5 6 Peringkat Y 6 3,5 1,5 1,5 3,5 5 s Y = (0 – 5) + (1 – 2) + (2 – 0) + (2 – 0) + (1 – 0) = 1 Koreksi peringkat sama pada Y Y t t (t – 1) T Y = (½)(4) = 2 1,5 2 2 3,5 2 2 4
48
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Koefisien korelasi Kendall Contoh 26 (dikerjakan di kelas) Tentukan koefisien korelasi Kendall untuk data berikut X 7 18 17 4 21 27 20 14 15 10 Y 5 2 4 4 3 2 4 5 4 6 Data dijadikan peringkat
49
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 26 Tentukan koefisien korelasi Kendall untuk data berikut (a) X 4 3 4 3 6 7 1 5 5 2 Y 4 2 6 5 7 9 1 8 10 3 (b) X 4 3 4 3 6 7 1 5 5 2 Y 3,4 3,2 3,5 3,0 2,9 3,4 2,5 3,9 3,6 3,0
50
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- E. Uji Hipotesis Koefisien Korelasi Kendall 1. Pendahuluan Hipotesis dapat berbentuk > 0 < 0 ≠ 0 Pengujian dapat dilakukan untuk sampel besar atau sampel kecil Pada sampel kecil (n 10) disediakan tabel nilai kritis khusus Pada sampel besar (n > 10), distribusi probabilitas pensampelan mendekati distribusi probabilitas normal
51
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- 2. Uji Hipotesis pada Sampel Besar Pada sampel besar, n > 10 Distribusi probabilitas pensampelan mendekati distribusi probabilitas normal Rerata = 0 Kekeliruan baku
52
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 27 Pada taraf signifikansi 0,05, uji > 0 jika sampel acak menunjukkan n = 12 s = 0,318 Hipotesis ▪ Sampel H 0 : = 0 n = 12 s = 0,318 H 1 : > 0 Distribusi probabilitas pensampelan Distribusi probabilitas normal Kekeliruan baku
53
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Statistik uji Kriteria pengujian Taraf signifikansi 0,05 Pengujian pada ujung atas Nilai kritis z (0,95) = 1,645 Tolak H 0 jika z > 1,645 Terima H 0 jika z 1,645 Keputusan Pada taraf signifikansi 0,05 terima H 0
54
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 28 (dikerjakan di kelas) Pada taraf signifikansi 0,05, uji < 0 jika sampel acak menunjukkan X 60 37 30 20 24 42 39 54 48 58 26 Y 2 7 6 9 7 4 8 2 4 3 8 Urutkan dahulu data ini ke dalam peringkat
55
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 29 Pada taraf signifikansi 0,05, uji > 0 jika sampel acak menunjukkan (a) X 0 0 1 1 3 4 5 6 7 8 8 12 Y 42 46 39 37 65 88 86 56 62 92 54 81 (b) X 4 7 11 8 1 3 10 9 5 13 14 2 15 6 12 Y 5 4 8 14 2 6 12 7 1 15 9 3 10 11 13
56
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- 3. Uji Hipotesis pada Sampel Kecil Sampel adalah kecil jika n 10 Pengujian hipotesis dilakukan dengan membandingkan p tabel khusus nilai kritis dengan taraf signifikansi Pada tabel khusus, s adalah harga mutlak (tidak dilihat tanda negatif atau positif) Kriteria pengujian Tolak H 0 jika p Terima H 0 jika p >
57
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Tabel Kendall Menunjukkan nilai p untuk pengujian satu ujung Nilai n s 4 5 8 9 0 0,625 0,592 0,548 0,540 2 0,375 0,408 0,452 0,460 4 0,167 0,242 0,360 0,381 6 0,042 0,117 0,274 0,306 8 0,042 0,199 0,238 10 0,0083 0,138 0,179 12 0,089 0,130 14 0,054 0,090 16 0,031 0,060 18 0,016 0,038 20 0,0071 0,022 22 0,0028 0,012 24 0,00087 0,0063 26 0,00019 0,0029 28 0,000025 0,0012 30 0,00043 32 0,00012 34 0,000025 36 0,0000028
58
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Tabel Kendall Menunjukkan nilai p untuk pengujian satu ujung Nilai n s 6 7 10 1 0,500 0,500 0,500 3 0,360 0,386 0,431 5 0,235 0,281 0,364 7 0,136 0,191 0,300 9 0,068 0,119 0,242 11 0,028 0,068 0,190 13 0,0083 0,035 0,146 15 0,0014 0,015 0,108 17 0,0054 0,078 19 0,0014 0,054 21 0,00020 0,036 23 0,023 25 0,014 27 0,0083 29 0,0046 31 0,0023 33 0,0011 35 0,00047 37 0,00018 39 0,000058 41 0,000015 43 0,0000028 45 0,00000028
59
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 30 Pada taraf signifikansi 0,05, uji < 0 apabila seperti pada contoh 22, sampel acak menunjukkan n = 6, s Y = 3, s = 0,20 Hipotesis H 0 : = 0 H 1 : < 0 Sampel n = 6 s Y = 3 s = 0,20 Kriteria pengujian (dari tabel khusus) p = 0,360 yakni p > 0,05 Keputusan Pada taraf signifikansi 0,05, terima H 0
60
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 31 (dikerjakan di kelas) Pada taraf sifnigikansi, uji hipotesis < 0 untuk sampel X 7 18 17 4 21 27 20 14 15 10 Y 5 2 4 4 3 2 4 5 4 6
61
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 32 Pada taraf signifikansi 0,05, uji hipotesis > 0 untuk data sampel (a) X 4 3 4 3 6 7 1 5 5 2 Y 4 2 6 5 7 9 1 8 10 3 (b) X 4 3 4 3 6 7 1 5 5 2 Y 3,4 3,2 3,5 3,0 2,9 3,4 2,5 3,9 3,6 3,0
62
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- F. Koefisien Konkordansi Kendall 1. Pendahuluan Koefisien korelasi peringkat Kendall menguji kecocokan penilai tetapi hanya berlaku untuk dua orang penilai Untuk lebih dari dua orang penilai, kecocokan penilaian dapat diuji melalui koefisien konkordansi Kendall Koefisien konkordansi Kendall terdiri atas Tanpa peringkat sama Ada peringkat sama
63
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- 2. Koefisien konkordansi Kendall tanpa peringkat sama Penilaian dilakukan oleh k penilai terhadap (k 3) n obyek (n 3) disusun dalam peringkat R adalah jumlah peringkat pada satu obyek oleh semua penilai Data perlu terlebih dahulu disusun ke dalam peringkat
64
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Rumus koefisien konkordansi Kendall tanpa peringkat sama dengan k = banyaknya penilai n = banyaknya obyek yang dinilai R j = jumlah peringkat pada satu obyek oleh semua penilai
65
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 33 Penilai Obyek a b c d e f X 1 6 3 2 5 4 Y 1 5 6 4 2 3 Z 6 3 2 5 4 1 R j 8 14 11 11 11 8 R j = 63
66
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Koefisien konkordansi R j / n = 63 /6 = 10,5 obyek a 1,5 2,25 b 4,5 20,25 c 1,5 2,25 d 1,5 2,25 e 1,5 2,25 f 1,25 2,25 Jumlah 25,5
67
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- 3. Koefisien konkordansi Kendall dengan peringkat sama Penilaian dilakukan oleh k penilai terhadap (k 3) n obyek (n 3) t peringkat sama untuk setiap peringkat sama disusun dalam peringkat R adalah jumlah peringkat pada satu obyek oleh semua penilai Data perlu terlebih dahulu disusun ke dalam peringkat
68
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Rumus koefisien konkordansi Kendall dengan peringkat sama dengan k = banyaknya penilai n = banyaknya obyek yang dinilai t = banyaknya peringkat sama pada setiap peringkat sama R j = jumlah peringkat pada satu obyek oleh semua penilai
69
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 34 Penilai Obyek a b c d e f g h i j X 1 4,5 2 4,5 3 7,5 6 9 7,5 10 Y 2,5 1 2,5 2,5 4,5 8 9 6,5 10 6,5 Z 2 1 4,5 4,5 4,5 4,5 8 8 8 10 R j 5,5 6,5 9 13,5 12 20 23 23,5 25,5 26,5 R j = 165 R j / n = 16,5
70
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Koefisien konkordansi Kendall T = 1,0 + 1,5 + 7 = 9,5 Peringkat sama X t T Y t T Z t T 4,5 2 0,5 2,5 2 0,5 4,5 4 5 7,5 2 0,5 4,5 2 0,5 8 3 2 1,0 6,5 2 0,5 7 1,5
71
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- G. Pengujian Hipotesis Koefisien Konkordansi Kendall 1. Macam pengujian Ada dua macam pengujian Pengujian pada sampel besar (n > 7) Pengujian pada sampel kecil (3 k 20, 3 n 7) Pengujian pada sampel besar didekatkan ke DP khi-kuadrat Pengujian pada sampel kecil menggunakan tabel khusus
72
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- 2. Pengujian hipotesis pada sampel besar (n > 7) Distribusi probabilitas pensampelan Didekatkan ke DP khi-kuadrat melalui 2 = k(n – 1) W dengan = n – 1 Kriteria pengujian adalah tabel 2 (1 )( )
73
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 35 Pada taraf sigfikansi 0,05, uji kesamaan penilai, jika sampel adalah seperti pada contoh 34 Hipotesis H 0 : Penilaian X, Y, dan Z adalah sama H 1 : Ada yang tidak sama Sampel k = 3 n = 10 W = 0,828 Statistik uji 2 = k(n – 1)W = (3)(10 – 1)(0,828) = 22,356 = n – 1 = 10 – 1 = 9
74
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Kriteria pengujian = 0,05 Nilai kritis 2 (0,05)(8) = 15,507 Tolak H 0 jika 2 > 15,507 Terima H 0 jika 2 15,507 Keputusan Pada taraf signifikansi 0,05, tolak H 0
75
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- 3. Pengujian hipotesis pada sampel kecil (n 7) Pengujian hipotesis menggunakan tabel khusus Bilangan pada tabel dibandingkan dengan s untuk Tolak H 0 jika s bilangan di dalam tabel Terima H 0 jika s < dari bilangan di dalam tabel
76
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- 4. Tabel Koefisien Konkordansi Kendall Tabel untuk = 0,05 k n Tambahan untuk n = 3 3 4 5 6 7 k s 3 64,4 103,9 157,3 9 54,0 4 49,5 88,4 143,3 217,0 12 71,9 5 62,6 112,3 182,4 276,2 14 83,8 6 76,7 136,1 221,4 335,2 16 95,8 8 48,1 101,7 183,7 299,0 453,1 18 107,7 10 60,0 127,8 231,2 376,7 571,0 15 89,8 192,9 349,8 570,5 864,9 20 119,7 258,0 468,5 764,4 1158,7
77
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Tabel Koefisien Konkordansi Kendall Tabel untuk = 0,01 k n Tambahan untuk n = 3 3 4 5 6 7 k s 3 75,6 122,8 185,6 9 75,9 4 61,4 109,3 176,2 265,0 12 103,5 5 80,5 142,8 229,4 343,8 14 121,9 6 99,5 176,1 282,4 422,6 16 140,2 8 66,8 137,4 242,7 388,3 579,9 18 158,6 10 85,1 175,3 309,1 494,0 737,0 15 131,0 269,8 475,2 758,2 1129,5 20 177,0 364,2 641,2 1022,2 1521,9
78
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Contoh 36 Pada taraf sigfikansi 0,05, uji kesamaan penilai, jika sampel adalah seperti pada contoh 33 Hipotesis H 0 : Penilaian X, Y, dan Z adalah sama H 1 : Ada yang tidak sama Sampel k = 3 n = 6 W = 0,16 Statistik uji s = 25,5
79
------------------------------------------------------------------------------------------------------- Bab 13A ------------------------------------------------------------------------------------------------------- Kriteria pengujian = 0,05 Nilai kritis untuk k = 3 n = 6 s = 103,9 Tolak H 0 jika s > 103,9 Terima H 0 jika s 103,9 Keputusan Pada taraf signifikansi 0,05, terima H 0
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.