Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

BANGUN RUANG SISI DATAR

Presentasi serupa


Presentasi berjudul: "BANGUN RUANG SISI DATAR"— Transcript presentasi:

1 BANGUN RUANG SISI DATAR
Rosdiana ( ) Desi Wulandari ( ) Naviul Hasanah ( ) Sito Hayyutasaqo ( )

2 KUBUS Kubus merupakan sebuah bangun ruang beraturan yang dibentuk oleh enam buah persegi yang bentuk dan ukurannya sama. Pemberian nama kubus diurutkan menurut titik sudut sisi alas dan sisi atapnya dengan menggunakan huruf kapital.

3 Unsur-unsur kubus 1. Sisi Kubus
Adalah suatu bidang persegi (permukaan kubus) yang membatasi bangun ruang kubus. Kubus mempunyai 6 sisi yang bentuk dan ukurannya sama. Sisi kubus dapat dikelompokkan dalam 2 bagian, yaitu : a. Sisi datar yang terdiri atas sisi alas dan sisi atap (tutup) b. Sisi tegak yang terdiri atas sisi depan, belakang, kiri, dan kanan.

4 2. Rusuk Kubus 3. Titik Sudut
Adalah ruas garis yang merupakan perpotongan dua bidang sisi pada sebuah kubus. Rusuk dikelompokkan menjadi dua bagian, yaitu : a. Rusuk datar. Rusuk yang terdiri dari rusuk ala dan rusuk atap b. Rusuk tegak. Rusuk yang diperoleh dari pertemuan sisi depan dengan sisi kiri/kanan dan sisi belakang dengan sisi kiri/kanan. Kubus mempunyai 12 rusuk, yaitu 8 rusuk datar dan 4 rusuk tegak. 3. Titik Sudut Titik sudut merupakan pertemuan dari tiga rusuk kubus yang berdekatan. Kubus mempunyai 8 titik sudut.

5 Diagonal Kubus Diagonal merupakan garis yang menghubungkan dua titik sudut sebidang yang saling berhadapan. Di dalam kubus terdapat tiga macam diagonal, yaitu : Diagonal Sisi (diagonal bidang) Diagonal sisi kubus adalah diagonal yang terdapat pada sisi kubus. Kubus mempunyai 12 diagonal sisi. 2. Bidang Diagonal Kubus Bidang diagonal merupakan bidang di dalam kubus yang dibuat melalui dua buah rusuk yang saling sejajar tetapi tidak terletak pada satu sisi.

6 3. Diagonal ruang Diagonal ruang adalah ruas garis yang menghubungkan dua titik sudut tidak sebidang yang saling berhadapan.

7 Menggambar Kubus IKUTI LANGKAH BERIKUT :

8 Hal-hal yang harus diperhatikan dalam menggambar kubus adalah sebagai berikut :
Rusuk-rusuk yang sejajar dalam gambar dilukis tetap sejajar. 2. Rusuk-rusuk yang tegak dalam gambar dilukis tetap tegak. 3. Rusuk-rusuk yang terhalang pandangan oleh sisi lainnya (tidak tampak) dilukiskan dengan garis putus-putus. 4. Sisi bagian depan dan sisi bagian belakang dilukiskan dengan persegi dengan ukuran yang sebenarnya. Sisi ini disebut sisi frontal dan rusuk-rusuknya disebut rusuk frontal. 5. Rusuk-rusuk yang tidak menghadap ke arak kita dilukiskan lebih pendek dari keadaan sebenarnya walaupun sesungguhnya panjang setiap rusuk kubus sama. Rusuk-rusuk ini disebut rusuk orthogonal. 6. Sisi-sisi orthogonal digambar dalam bentuk jajar genjang.

9 Jaring-jaring Kubus d) c) b) a) f) g) e) h) i) j)
Jaring-jaring kubus merupakan rangkaian sisi-sisi kubus yang jika dibentangkan akan terbentuk sebuah bidang datar. Pada gambar di bawah ini manakah yang merupakan jaring-jaring kubus? d) c) b) a) f) g) e) h) i) j)

10 Luas Permukaan dan Volume Kubus
Untuk menghitung luas permukaan kubus sama dengan menghitung luas jaring-jaring kubus. Karena permukaan kubus terdiri dari enam buah persegi dengan ukuran yang sama, maka luas kubus dengan panjang s adalah : Luas = 6 x luas persegi = 6 x s2 Luas Permukaan diukur dengan satuan persegi (2)

11 Hubungan antara satuan luas yang satu dengan yang lainnya dapat ditunjukkan sebagai berikut :

12 Contoh Soal : Sebuah dadu berbentuk kubus dengan panjang rusuk 75mm. Hitumglah luas permukaannya dalam satuan cm2 ! Jawab : Luas = 6 x s2 =6 x 752 = 6 x 5625 =33.750mm2 =3,375 cm2

13 Volume Kubus Volume adalah isi dari bangun ruang.
Volume diukur dalam satuan kubik (3). Misalkan suatu perusahaan mengemas produk makanannya dalam kardus yang berbebtuk kubus dengan panjang rusuk 1 dm. kemudian kotak-kotak makanan itu dimasukkan kedalam kardus yang lebih besar dengan panjang rusuk 4 dm. maka banyaknya kotak yang ditampung kardus tersebut adalah :

14 Pada bagian bawah akan menampung sebanyak (4x4) kotak atau
sama dengan 16 kotak. Pada bagian atas terdapat 4 tumpukan sehingga banyaknya adalah 4x16 yaitu 64 kotak. Jadi banyaknya kotak yang dapat ditampung adalah 64 kotak. Dari contoh kasus di atas maka, dapat disimpulkan bahwa untuk mengetahui volume kubus adalah : V = s x s x s V = s3

15 Hubungan antara satuan volume yang satu dengan yang lainnya dapat ditunjukkan sebagai berikut :

16 BALOK By : Sito Hayyutasaqo

17 Balok merupakan sebuah bangun ruang beraturan yang dibentuk oleh 3 pasang persegi panjang yang masing-masing memiliki bentuk dan ukuran yang sama Pemberian nama balok diurutkan menurut titik sudut sisi alas dan sisi atapnya dengan menggunakan huruf kapital

18 Unsur-unsur Balok Sisi Rusuk Titik Sudut

19 Suatu bidang yang membatasi bangun ruang Balok
Balok terdiri dari 3 pasang persegi panjang. masing-masing pasang sisi yang sejajar memiliki bentuk dan ukuran yang sama Sisi Balok dapat dikelompokkan dalam 2 bagian, yaitu : a. Sisi datar yang terdiri atas sisi alas dan sisi atap (tutup) b. Sisi tegak yang terdiri atas sisi depan, belakang, kiri, dan kanan.

20 Unsur-unsur Balok Sisi Rusuk Titik Sudut

21 Rusuk dikelompokkan menjadi dua bagian, yaitu :
Adalah ruas garis yang merupakan perpotongan dua bidang sisi pada sebuah balok Rusuk dikelompokkan menjadi dua bagian, yaitu : a. Rusuk datar. Rusuk yang terdiri dari rusuk ala dan rusuk atap b. Rusuk tegak. Rusuk yang diperoleh dari pertemuan sisi depan dengan sisi kiri/kanan dan sisi belakang dengan sisi kiri/kanan. Balok mempunyai 12 rusuk, yaitu 8 rusuk datar dan 4 rusuk tegak. Dan 4 Rusuk yang sejajar sama panjang.

22 Unsur-unsur Balok Sisi Rusuk Titik Sudut

23 Titik sudut merupakan pertemuan dari tiga rusuk yang berdekatan.
Balok mempunyai 8 titik sudut.

24 DIAGONAL BALOK Diagonal merupakan garis yang menghubungkan dua titik sudut sebidang yang saling berhadapan. Pada balok terdapat tiga macam diagonal, yaitu : Diagonal Sisi (diagonal bidang) Diagonal sisi balok adalah diagonal yang terdapat pada sisi balok. balok mempunyai 12 diagonal sisi. 2. Bidang Diagonal balok Bidang diagonal merupakan bidang di dalam balok yang dibuat melalui dua buah rusuk yang saling sejajar tetapi tidak terletak pada satu sisi. Bidang bidang diagonal balok berbentuk persegi panjang.

25 3. Diagonal ruang Diagonal ruang adalah ruas garis yang menghubungkan dua titik sudut tidak sebidang yang saling berhadapan. Diagonal-diagonal ruang suatu balok sama panjang

26 MENGGAMBAR BALOK

27 Langkah 1: Gambar bidang balok bagian depan yang berbentuk persegi panjang, yaitu persegi panjang ABFE Langkah 2: Gambar bidang balok bagian belakang yang berbentuk persegipanjang, yaitu persegi panjang DCGH Langkah 3: Gambar rusuk-rusuk yang mengarah dari depan ke belakang, yaitu AD, BC, FG, dan EH INGAT..!! Rusuk yang terhalang pandangannya digambar dengan garis putus-putus

28 Jaring-jaring balok Jaring-jaring balok merupakan rangkaian sisi-sisi balok yang jika dibentangkan akan terbentuk sebuah bidang datar.

29 Contoh Jaring-jaring Balok

30 L = 2pl + 2pt + 2lt Luas Permukaan dan Volum Balok
A. Luas Permukaan Balok Menghitung luas permukaan balok dapat dilakukan dengan menggunakan rumus sebagai berikut: L = 2pl + 2pt + 2lt Dimana : p= panjang, l= lebar, dan t= tinggi

31 Berapakah ukuran seluruh potongan-potongan karton yang diperlukan untuk membuat sebuah balok dengan ukuran panjang sisi 1dm, lebar 6cm, dan tinggi 4cm ?

32 248 cm2 atau 2,48 dm2

33 V = p x l x t VOLUME BALOK Volume balok dapat dihitung dengan rumus:
Dimana : p= panjang, l= lebar, dan t= tinggi

34 Sebuah bak mandi berukuran panjang 2m, lebar 1,5m, dan tinggi 1m diisi air hingga penuh. Berapa liter kah volume air yang mengisi bak mandi tersebut ?

35 3000 Liter air

36 I think enough…

37 Pengerian prisma Prisma merupakan bangun ruang yang mempunyai sepasang sisi kongruen dan sejajar serta rusuk-rusuk tegak saling sejajar. Gambar dibawah ini merupakan jenis-jenis prisma: Prisma segitiga prisma persegi(kubus) prisma persegi panjang(balok) 37

38 PRISMA

39 Pemberian nama Perhatikan gambar dibawah ini: -Bangun sisi ruang datar ABCDE.FGHIJ disebut prisma segi lima, karena mempunyai lima buah sisi tegak. -sepasang sisi/bidang yang saling sejajar dan kongruen disebut sebagai penampang ,yaitu bidang ABCDE disebut sisi alas dan bidang FGHIJ disebut sisi atap. -Bidang-bidang yang menghubungkan penampang prisma disebut sebagai selimut prisma ,yaitu bidang tegak ABGF,BCHG,CDIH,EDIJ,dan AEJF. A B C D E F G H I J 39

40 Sifat-sifat prisma 1.bidang alas dan bidang atasnya sejajar dan kongruen 2.bidang sisi tegak berbentuk persegi panjang 3.Semua rusuk tegaknya sejajar dan sama panjang 4.semua bidang diagonalnya berbentuk jajar genjang.banyaknya bidang diagonal segi-nn adalah n/2(n-3). Banyak diagonal ruang dalam prisma segi –n adalah n(n-3). 40

41 LANGKAH-LANGKAH MELUKIS SEBUAH PRISMA SEGI LIMA ABCDE.FGHIJ
Lukis bidang alas prisma berbentuk segi lima ABCDE. Tariik garis AF,BG,CH,DI, dan EJ yang saling sejajar dan sama panjang. Lukis bidang atap dengan menghubungkan titik-titik F,G,H,I,J.

42 Luas permukaan prisma Luas permukaan sebuah prisma adalah jumlah semua luas sisi prisma. Pada semua prisma tegak berlaku : Luas permukaan prisma tegak= 2luas alas + (keliling alas x tinggi) Contoh: Alas sebuah prisma berbentuk segitiga siku-siku seperti terlihat pada gambar disamping.Hitunglah luas permukaan prisma tersebut. 4cm 5cm 6cm 3cm 42

43 Unsur-unsur prisma Sebuah Gambar prisma ABCDE.FGHIJ
Bagian-bagian gambar disamping adalah 1.bidang/sisi prisma Bidang ABCDE sejajar dengan bidang FGHIJ yang masing-masing disebut sisi alas dan sisi atas.Bidang ABGF,BCHG,CDIH,DEJIAEJF disebut bidang sisi tegak.kelima sisi tegak itu disebut selubung prisma/selimut prisma. 2.rusuk prisma Pada bidang sisi alas ABCDE terdapat ruas-ruas garis sebagai jembatan yaitu rusuk AB,BC,CD,DE,dan AE yang disebut rusuk alas dan ruas garis pembatas pada sisi Atas yaitu rusuk GH,HI,IJ,JF,FG,disebut rusuk atas .rusuk tegaknya adalah AF,BG,CH,DI,EJ. 43

44 3.TITIK-TITIK SUDUT PRISMA
Titik sudut prisma yaitu A,B,C,D,E,F,G,H,I,J. 4.DIAGONAL RUANG PRISMA Diagonal AH,AI,FC,FD Disebut diagonal ruang prisma . 5.BIDANG DIAGONAL PRISMA Bidang ACHF,ADIF disebut bidang diagonal prisma 44

45 Volume prisma Volume prisma tegak dapat dihitung dengan menggunakan rumus: Volume prisma =luas alas x tinggi Satuan untuk volume yang sering dipakai adalah liter (l),milliliter (ml),m3,cm3,dm3,mm3. 1 dm3= 1000cm3 1l=1dm3 1cm3=1000mm3 1cm3=1 cc 1l=1000ml 1l=1000cc 45

46 a.Tentukan volume prisma yang luas alasnya 30m2 dan tingginya 2m
Contoh : a.Tentukan volume prisma yang luas alasnya 30m2 dan tingginya 2m b.Tentukan volume prisma yang tingginya 6cm dan alasnya berbentuk segitiga siku-siku dengan sisi siku-sikunya adalah 4cm dan 3cm. 46

47 L IMAS

48 PENGERTIAN LIMAS Limas merupakan bangun ruang sisi datar yang selimutnya terdiri atas bangun datar segitiga dengan satu titik kesatuan. Dan titik persekutuan itu disebut titik puncak limas. Bidang – bidang pembentuk limas disebut bidang limas. Garis yang merupakan perpotongan antara dua sisi limas disebut rusuk limas. Jarak antara titik puncak limas dengan bidang alas disebut tinggi limas.

49 UNSUR – UNSUR LIMAS Segiempat PQRS merupakan bidang alas limas
Titik T merupakan puncak limas Rusuk – rusuk PQ,QR,RS, dan PS disebut rusuk alas limas Rusuk –rusuk PT,QT,RT dan ST merupakan rusuk tegak limas Segitiga TPQ,TQR,TRS, dan TPS merupakan bidang sisi tegak limas TO merupakan tinggi limas Garis tinggi pada setiap sisi tegak merupakan apotema. TV adalah contoh salah satu apotema.

50 SIFAT – SIFAT LIMAS Semua rusuk tegaknya menyatu pada satu puncak.
Sisi tegaknya berbentuk segitiga samakaki. Alasnya berupa segi banyak. Garis apotema tegak lurus rusuk alas.

51 MELUKIS LIMAS BERATURAN
Langkah-langkah yang harus ditempuh dalam melukis sebuah limas beraturan adalah : Lukis bidang alas pada limas pada kertas persegi atau persegi panjang dan tetapkan pula titik beratnya. 2.Tarik garis vertikal dari titik berat alas untuk mewakili garis tinggi limas . 3.Tetapkan titik puncak limas berdasarkan panjang garis tinggi limas. 4. Tarik garis lurus melalui puncak ke masing-masing titik sudut bidang alas . 5. Lukis garis-garis yang tidak tampak dengan garis putus-putus.

52 MEMBUAT JARING-JARING SEBUAH LIMAS
Langkah 1 : lukislah jaring -jaring alas limas sesuai dengan ukurannya. Langkah 2 : tentukan titik pusat alas limas . Kemudian , tarik garis tegak lurus pada masing-masing rusuk alasnya. Langkah 3 : ukurlah garis tegak limas dengan menggunakan jangkan . Lingkarkanlah dengan titik pusat pada masing-masing titik sudutnya, sehingga memotong garis pada langkah 2. kemudian , titik -titik potong tadi dihubungkan ketitik sudut.

53 LUAS LIMAS Luas sisi limas = luas alas + jumlah luas sisi tegak VOLUME LIMAS Volume limas = ⅓ luas alas x tinggi

54 SEKIAN TERIMA KASIH

55 Wassalamu’alaikum Wr. Wb.


Download ppt "BANGUN RUANG SISI DATAR"

Presentasi serupa


Iklan oleh Google