Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
MODEL-MODEL IKATAN KIMIA
2
Sifat Atom dan Ikatan Kimia
Suatu partikel baik berupa ion bermuatan, inti atom dan elektron diantara mereka, akan membentuk ikatan kimia karena akan menurunkan energi potensial antara partikel positif dan negatif Dalam tataran atomik, kita membedakan adanya logam dan non logam berdasarkan beberapa sifat yang berhubungan dalam tabel periodik
3
Tabel Periodik: Logam dan Non Logam
4
3 Kombinasi Ikatan antara Logam dan Non Logam
5
Transfer Elektron dan Ikatan Ionik
Ikatan ini terjadi ketika ada perbedaan tendensi yang sangat besar dari atom untuk melepas atau menangkap elektron Perbedaan terjadi antara logam yang reaktif (gol 1A) dan non logam (gol 7A dan 6A atas) Atom logam (IE rendah) kehilangan satu atau dua elektron valensi, sementara atom non logam (EA sangat negatif) menangkap elektron Terjadi transfer elektron antara logam dan non logam membentuk ion dengan konfigurasi gas mulia Gaya elektrostatik antar ion positif dan negatif membentuk susunan padatan ionik dengan rumus kimia menunjukkan rasio kation terhadap anion (rumus empiris)
6
Sharing Elektron dan Ikatan Kovalen
Ikatan ini terjadi manakala terjadi perbedaan kecil pada tendensi untuk melepas atau menangkap elektron sehingga terjadi sharing elektron Tipe ikatan ini umum terjadi antar atom non logam (logam juga bisa berikatan kovalen) Tiap-tiap atom non logam mempertahakan elektron masing-masing dan mencoba menarik elektron atom lain Gaya tarik masing-masing atom terhadap elektron valensi lawannya membuat kedua atom berikatan Pasangan elektron sharing (pakai bersama) dianggap terlokalisasi diantara kedua atom Ikatan ini menghasilkan molekul-molekul yang terpisah dan merefleksikan rumus kimia sebenarnya (rumus molekul)
7
Pita Elektron Ikatan Logam
Secara umum atom logam berukuran besar, logam dapat dengan mudah kehilangan elektron terluar (IE rendah) namun sulit menangkap/memperoleh elektron Sifat ini mengarahkan logam-logam untuk sharing elektron valensi mereka dengan cara yang berbeda pada ikatan kovalen Dalam model ikatan logam, elektron valensi atom-atom logam yang berdekatan akan berkumpul membentuk pita (lautan elektron) yang terdistribusi secara merata diantara atom-atom tersebut dan disekitar inti dan elektron bagian dalam Pada ikatan ini elektron sharing terdelokalisasi dan bergerak bebas disekujur potongan logam.
8
Simbol Titik Elektron Lewis
Dalam model simbol titik elektron Lewis (G.N. Lewis1875 – 1946), simbol unsur mewakili inti dan elektron bagian dalam sedangkan titik-titik disekitarnya menunjukkan elektron valensi Nomor grup A yang menunjukkan jumlah elektron valensi Tempatkan satu titik pada masing-masing sisi (atas, bawah, kiri, kanan) Baru pasangkan titik-titik hingga semua terpakai
9
Model Ikatan Ionik Fokus utama model ikatan ionik adalah adanya transfer elektron dari logam ke non logam untuk membentuk ion yang kemudian bersatu membentuk padatan senyawa ionik Berdasarkan fenomena yang terjadi Lewis mengajukan aturan oktet, saat atom-atom berikatan, ia akan melepas, menangkap atau memakai bersama elektron untuk mencapai pengisian kulit terluar 8 (atau 2) elektron
10
3 Cara Penulisan Transfer Elektron
Penggambaran dengan konfigurasi elektron Penggambaran dengan diagram orbital Penggunaan simbol titik elektron Lewis
11
Soal Latihan Gunakan diagram orbital parsial dan simbol titik elektron Lewis untuk menggambarkan pembentukan ion Na+ dan O2- dari atom-atomnya dan tentukan rumus senyawa Gunakan konfigurasi elektron ringkas dan simbol Lewis untuk menggambarkan pembentukan ion Mg2+ dan Cl-, tuliskan rumus senyawanya!
12
Aspek Energi dalam Ikatan Ionik: Energi Kisi
Misalkan ada suatu reaksi antara unsur logam yang reaktif (Li) dan mudah melepas elektron dengan gas halogen (F) yang cenderung menarik elektron: Li(g) Li+(g) + e- IE1 = 520 kJ F(g) + e- F-(g) EA = -328 kJ Reaksi total: Li(g) + F(g) Li+(g) + F-(g) IE1 + EA = 192 kJ
13
Energi total yang dibutuhkan reaksi ini bahkan lebih besar karena kita harus mengkonversi Li dan F kedalam bentuk gas Akan tetapi eksperimen menunjukkan enthalpi pembentukan padatan LiF (∆H0f) = kJ Jika kedua unsur dalam bentuk gas: Li+(g) + F-(g) LiF(g) ∆H0 = -755 kJ Energi kisi adalah perubahan enthalpi yang menyertai ion-ion gas yang bergabung membentuk padatan ionik: Li+(g) + F-(g) LiF(s) ∆H0kisi LiF = energi kisi = kJ
14
Daur Born-Haber
15
Soal Latihan Dengan menggunakan daur Born-Haber untuk senyawa KF, hitung afinitas elektron fluorine jika diketahui data-data sebagai berikut K(s) K(g) ∆H0 = 90 kJ K(g) K+(g) + e- ∆H0 = 419 kJ F2(g) 2F(g) ∆H0 = 159 kJ K(s) + ½ F2(g) KF(s) ∆H0f = -569 kJ K+(g) + F-(g) KF(s) ∆H0kisi = -821 kJ
16
Trend Periodik Energi Kisi
Menurut Hukum Coulomb: Gaya elektrostatik ∞ (muatan A x muatan B) Jarak2 Karena energi = gaya x jarak, maka rumusan diatas dapat juga ditulis: Energi elektrostatik = (muatan A x muatan B) Jarak Didalam padatan ionik, A dapat berupa kation dan B anion dengan memperhitungkan jarak = jari-jari kation + jari-jari anion
17
Trend pada Energi Kisi
18
Faktor yang Mempengaruhi Energi Kisi
Pengaruh dari ukuran ion, semakin besar ukuran/jari-jari maka energi kisi akan semakin kecil. Dalam satu golongan makin kebawah ukuran makin besar dan energi kisi makin kecil Pengaruh dari muatan ion dengan semakin besar muatan ion (Na+ < Mg2+) maka energi kisi akan semakin besar.
19
Soal Latihan Untuk masing-masing pasangan berikut tentukan mana senyawa dengan energi kisi tertinggi (paling negatif) dan jelaskan jawaban anda! (a) BaS atau CsCl (b) LiCl atau CsCl
20
Sifat-sifat Ikatan Ionik
Keras Kaku Rapuh
21
Model Ikatan Kovalen Jika kita membuka literatur kimia berupa hand book atau ensiklopedi maka akan didapati sebagian besar senyawa kimia yang ada dialam berupa senyawa kovalen Senyawa kovalen mengambil porsi terbesar dan yang utama dalam model ikatan kimia antar unsur-unsur dialam
22
Pembentukan Ikatan Kovalen
23
Dalam model ikatan kovalen, atom mencapai konfigurasi elektron kulit terluar penuh (seperti gas mulia) namun elektron yang dipakai bersama dihitung secara keseluruhan sebagai milik masing-masing Pasangan elektron sunyi (tidak berikatan) adalah pasangan elektron yang tidak dipakai bersama dalam ikatan Orde ikatan menunjukkan jumlah pasangan elektron yang digunakan bersama antara dua atom yang berikatan
24
Energi Ikatan
27
Hubungan Orde Ikatan, Panjang Ikatan dan Energi Ikatan
Panjang Rata-rata (pm) Energi Ikatan (kJ/mol) C – O C = O C ≡ O C – C C = C C ≡ C N – N N = N N ≡ N 1 2 3 143 123 113 154 134 121 146 122 110 358 745 1070 347 614 839 160 418 945
28
Soal Latihan Dengan menggunakan tabel periodik, urutkan ikatan dibawah ini dengan panjang dan kekuatan ikatan semakin kecil (a) S – F, S – Br, S – Cl (b) C = O, C – O, C ≡ O Urutkan ikatan dibawah ini menurut kenaikan panjang dan kekuatan ikatan: (a) Si – F, Si – C, Si – O (b) N = N, N – N, N ≡ N
29
Sifat Ikatan Kovalen
30
Sifat Ikatan Kovalen 2
31
Elektronegatifitas dan Polaritas Ikatan
Dicetuskan pertama kali oleh Linus Pauling dan menelurkan skala elektronegatifitas (EN) dari unsur dalam tabel periodik Gambaran Umum: Kita bisa memperkirakan energi ikatan H – F akan memiliki nilai diantara energi H – H (432 kJ/mol) dan F – F (159 kJ/mol). Namun ternyata nilai energi ikatan H – F sebesar 565 kJ/mol Pauling menduga besarnya energi ini karena ada kontribusi elektrostatik dalam ikatan tsb. Jika F menarik elektron lebih banyak kearahnya, maka pemakaian bersama yang tidak seimbang ini memicu timbulnya muatan parsial negatif pada F dan positif pada H. Beda muatan ini kemudian menimbulkan gaya tarik elektrostatik sehingga ikatan H – F lebih besar energinya dari yang diperkirakan
32
Elektronegatifitas dan Polaritas Ikatan
33
Elektronegatifitas dan Ukuran Atom
34
Elektronegatifitas dan Bilangan Oksidasi
Penentuan bilangan Oksidasi berdasarkan elektronegatifitas: Atom yang lebih elektronegatif mendapatkan semua elektron sharing dan atom yang kurang elektronegatif dihitung nol Tiap-tiap atom dalam ikatan masing-masing dihitung semua elektron tak berikatannya sendiri-sendiri Bilangan oksidasi diberikan oleh rumus: Biloks = jml e valensi – (jml e share + jml e non share) Contoh HCl memiliki elektron valensi 7 dan elektron share 2 sehingga biloksnya = 7 – 8 = -1. sedangkan H dihitung biloks = 1 – 0 = 1
35
Ikatan Kovalen Polar dan Polaritas Ikatan
Dalam ikatan kovalen dengan perbedaan elektronegatifitas besar, elektron cenderung tertarik lebih besar kearah satu atom Pada posisi ini ikatan bersifat polar dan digambarkan dengan dua cara: Dengan panah polar → atau Dengan pemberian tanda δ+ dan δ-
36
Soal Latihan Tunjukkan polaritas ikatan berikut dengan bantuan panah polar: N – H, F – N, I – Cl Susun berdasarkan urutan kenaikan polaritas beberapa ikatan berikut: H – N, H – O, H – C. Susun berdasarkan kenaikan polaritas ikatan dan beri tanda dengan δ+ dan δ- pada atom yang sesuai: (a) Cl – F,Br – Cl, Cl – Cl, (b) Si – Cl, P – Cl, S – Cl, Si – Si.
37
Karakter Ionik Parsial Ikatan Kovalen Polar
Didunia nyata, ikatan kimia tidak dapat sepenuhnya dikatakan ionik atau kovalen, seringkali lebih cocok menggunakan istilah seberapa ionik atau seberapa kovalen! Karakter ionik parsial suatu ikatan terkait dengan perbedaan keelektronegatifan (EN) Semakin besar EN akan semakin besar muatan parsial dan semakin besar pula karakter ionik parsial LiF memiliki EN = 4,0 – 1,0 = 3,0; HF memiliki EN = 4,0 – 2,1 = 1,9; F2 memiliki EN = 0. sehingga dapat disimpulkan LiF lebih berkarakter ionik dibandingkan HF yang juga lebih berkarakter ionik dibandingkan F2.
38
Skala Karakter Ionik Parsial
39
Perubahan Sifat Dalam Perioda
40
Ikatan Logam
41
Teori Orbital Molekul Padatan
42
Sifat Konduktifitas Padatan
Presentasi serupa
© 2025 SlidePlayer.info Inc.
All rights reserved.