Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Mengenal Sifat Material #1 Atom, Ikatan Atom, Susunan Atom

Presentasi serupa


Presentasi berjudul: "Mengenal Sifat Material #1 Atom, Ikatan Atom, Susunan Atom"— Transcript presentasi:

1 Mengenal Sifat Material #1 Atom, Ikatan Atom, Susunan Atom

2 Cakupan Bahasan Elektron Sebagai Partikel dan Gelombang
Perkembangan Konsep Atom Elektron Sebagai Partikel dan Gelombang Persamaan Gelombang Schrödinger Aplikasi Persamaan Schrödinger Konfigurasi Elektron Dalam Atom Ikatan Atom dan Susunan Atom

3 BAB 1 Pendahuluan

4 Perkembangan Konsep Atom
Perkembangan pengetahuan tentang material dilandasi oleh konsep atom yang tumbuh semakin rumit dibandingkan dengan konsep awalnya yang sangat sederhana.

5 Dijelaskan: gelombang cahaya seperti partikel; disebut photon
Perkembangan Konsep Atom  460 SM Democritus Dalton : berat atom Thomson : atom bukan partikel terkecil  elektron Akhir abad 19 : Persoalan radiasi benda hitam Kirchhoff Max Planck Eosc = h  f h = 6,626  1034 joule-sec Albert Einstein efek photolistrik 1 2 3 Emaks f metal 1 metal 2 metal 3 Dijelaskan: gelombang cahaya seperti partikel; disebut photon Rutherford : Inti atom (+) dikelilingi oleh elektron (-)

6 Perkembangan Konsep Atom
Niels Bohr LYMAN BALMER PASCHEN tingkat energi 1 2 3 4 5 1923 Compton : photon dari sinar-X mengalami perubahan momentum saat berbenturan dengan elektron valensi. Louis de Broglie : partikel sub-atom dapat dipandang sebagai gelombang Erwin Schrödinger : mekanika kuantum Davisson dan Germer : berkas elektron didefraksi oleh sebuah kristal Heisenberg : uncertainty Principle Born : intensitas gelombang

7 Model Atom Bohr

8 Perkembangan Konsep Atom, Model Atom Bohr
Model atom Bohr dikemukakan dengan menggunakan pendekatan mekanika klasik. Model atom Bohr berbasis pada model yang diberikan oleh Rutherford: Partikel bermuatan positif terkonsentrasi di inti atom, dan elektron berada di sekeliling inti atom. Perbedaan penting antara kedua model atom: Model atom Rutherford: elektron berada di sekeliling inti atom dengan cara yang tidak menentu Model atom Bohr: elektron-elektron berada pada lingkaran-lingkaran orbit yang diskrit; energi elektron adalah diskrit.

9 Perkembangan Konsep Atom, Model Atom Bohr
Ze r Fc Gagasan Bohr : orbit elektron adalah diskrit; ada hubungan linier antara energi dan frekuensi seperti halnya apa yang dikemukakan oleh Planck dan Einstein

10 Perkembangan Konsep Atom, Model Atom Bohr
Dalam model atom Bohr : energi dan momentum sudut elektron dalam orbit terkuantisasi Setiap orbit ditandai dengan dua macam bilangan kuantum: bilangan kuantum prinsipal, n bilangan kuantum sekunder, l

11 Untuk atom hidrogen pada ground state, di mana n = 1 dan Z = 1,
Perkembangan Konsep Atom, Model Atom Bohr Jari-Jari Atom Bohr Untuk atom hidrogen pada ground state, di mana n = 1 dan Z = 1, maka r = 0,528 Å

12 bilangan kuantum prinsipal
Perkembangan Konsep Atom, Model Atom Bohr Tingkat-Tingkat Energi Atom Hidrogen n : 13,6 3,4 1,51 energi total [ eV ] ground state  10,2 eV  1,89 eV bilangan kuantum prinsipal

13 Perkembangan Konsep Atom, Model Atom Bohr
Spektrum Atom Hidrogen 1 2 3 4 5 deret Lyman deret Balmer deret Paschen Tingkat Energi Deret n1 n2 Radiasi Lyman 1 2,3,4,… UV Balmer 2 3,4,5,… tampak Paschen 3 4,5,6,… IR Brackett 4 5,6,7,… Pfund 5 6,7,8,…

14 Elektron Sebagai Gelombang
BAB 2 Elektron Sebagai Gelombang

15 Kecepatan ini disebut kecepatan fasa
Elektron Sebagai Gelombang Gelombang Tunggal bilangan gelombang Kecepatan rambat gelombang dicari dengan melihat perubahan posisi amplitudo Kecepatan ini disebut kecepatan fasa

16 Elektron Sebagai Gelombang
Paket Gelombang Paket gelombang adalah gelombang komposit yang merupakan jumlah dari n gelombang sinus dengan k0 , 0, A0, berturut-turut adalah nilai tengah dari bilangan gelombang, frekuensi dan amplitudo

17 Elektron Sebagai Gelombang
Bilangan gelombang: k variasi k sempit Perbedaan nilai k antara gelombang-gelombang yang membentuk paket gelombang tersebut sangat kecil  dianggap kontinyu demikian juga selang k sempit sehingga An / A0 ≈ 1. Dengan demikian maka Pada suatu t tertentu, misalnya pada t = 0 persamaan bentuk amplitudo gelombang menjadi Karena perubahan nilai k dianggap kontinyu maka

18 Elektron Sebagai Gelombang
Persamaan gelombang Persamaan gelombang komposit untuk t = 0 menjadi Persamaan ini menunjukkan bahwa amplitudo gelombang komposit ini terselubung oleh fungsi lebar paket gelombang selubung x

19 Kecepatan group ini merupakan kecepatan rambat paket gelombang
Elektron Sebagai Gelombang Kecepatan Gelombang kecepatan fasa: kecepatan group: Amplitudo gelombang akan mempunyai bentuk yang sama bila S(x,t) = konstan. Hal ini terjadi jika ()t = (k)x untuk setiap n Kecepatan group ini merupakan kecepatan rambat paket gelombang

20 Elektron Sebagai Gelombang
Panjang gelombang de Broglie, Momentum, Kecepatan Einstein : energi photon de Broglie: energi elektron konstanta Planck momentum elektron Panjang gelombang Momentum Kecepatan

21 Elektron Sebagai Gelombang
Elektron Sebagai Partikel dan Elektron Sebagai Gelombang Elektron dapat dipandang sebagai gelombang tidaklah berarti bahwa elektron adalah gelombang; akan tetapi kita dapat mempelajari gerakan elektron dengan menggunakan persamaan diferensial yang sama bentuknya dengan persamaan diferensial untuk gelombang. Elektron sebagai partikel: massa tertentu, m. Elektron sebagai gelombang massa nol, tetapi  = h/mve. Elektron sebagai partikel: Etotal = Ep+ Ek= Ep+ mve2/2. Elektron sebagai gelombang: Etotal = hf = ħ. Elektron sebagai partikel: p = mve2 Elektron sebagai gelombang: p = ħk = h/. Dalam memandang elektron sebagai gelombang, kita tidak dapat menentukan momentum dan posisi elektron secara simultan dengan masing-masing mempunyai tingkat ketelitian yang kita inginkan secara bebas. Kita dibatasi oleh prinsip ketidakpastian Heisenberg: px  h. Demikian pula halnya dengan energi dan waktu: Et  h .

22 Persamaan Schrodinger
BAB 3 Persamaan Schrodinger

23 Persamaan Schrödinger
Elektron sebagai partikel memiliki energi = energi kinetik + energi potensial E merupakan fungsi p dan x H = Hamiltonian x V p H - = ) ( , Turunan H(p,x) terhadap p memberikan turunan x terhadap t. Turunan H(p,x) terhadap x memberikan turunan p terhadap t.

24 u merupakan fungsi t dan x
Persamaan Schrödinger Gelombang : u merupakan fungsi t dan x Turunan u terhadap t: Turunan u terhadap x: Operator energi Operator momentum

25 Persamaan Schrödinger
Hamiltonian: Operator: Jika H(p,x) dan E dioperasikan pada fungsi gelombang  maka diperoleh Inilah persamaan Schrödinger satu dimensi tiga dimensi

26 hanya merupakan fungsi posisi
Persamaan Schrödinger Persamaan Schrödinger Bebas Waktu Aplikasi persamaan Schrödinger dalam banyak hal hanya berkaitan dengan energi potensial, yaitu besaran yang hanya merupakan fungsi posisi Oleh karena itu jika persamaan tersebut diupayakan tidak merupakan fungsi yang bebas waktu agar penanganannya menjadi lebih sederhana Jika kita nyatakan: maka dapat diperoleh sehingga Satu dimensi Tiga dimensi

27 Persamaan Schrödinger
Fungsi Gelombang Persamaan Schrödinger adalah persamaan diferensial parsial dengan  adalah fungsi gelombang dengan pengertian bahwa adalah probabilitas keberadaan elektron pada waktu tertentu dalam volume dx dy dz di sekitar titik (x, y, z) Jadi persamaan Schrödinger tidak menentukan posisi elektron melainkan memberikan probabilitas bahwa ia akan ditemukan di sekitar posisi tertentu. Kita juga tidak dapat mengatakan secara pasti bagaimana elektron bergerak sebagai fungsi waktu karena posisi dan momentum elektron dibatasi oleh prinsip ketidakpastian Heisenberg Contoh kasus satu dimensi pada suatu t = 0

28 Persamaan Schrödinger
Persyaratan Fungsi Gelombang Elektron sebagai suatu yang nyata harus ada di suatu tempat. Oleh karena itu fungsi gelombang (untuk satu dimensi) harus memenuhi: Fungsi gelombang , harus kontinyu sebab jika terjadi ketidak-kontinyuan hal itu dapat ditafsirkan sebagai rusaknya elektron, suatu hal yang tidak dapat diterima. Turunan fungsi gelombang terhadap posisi,juga harus kontinyu, karena turunan fungsi gelombang terhadap posisi terkait dengan momentum elektron Oleh karena itu persyaratan ini dapat diartikan sebagai persayaratan kekontinyuan momentum. Fungsi gelombang harus bernilai tunggal dan terbatas sebab jika tidak akan berarti ada lebih dari satu kemungkinan keberadaan elektron. Fungsi gelombang tidak boleh sama dengan nol di semua posisi sebab kemungkinan keberadaan elektron haruslah nyata, betapapun kecilnya.

29 Aplikasi Persamaan Schrodinger
BAB 4 Aplikasi Persamaan Schrodinger

30 Persamaan gelombang elektron bebas
Aplikasi Persamaan Schrödinger Elektron Bebas Elektron bebas adalah elektron yang tidak mendapat pengaruh medan listrik sehingga energi potensialnya nol, V(x) = 0 solusi harus berlaku untuk semua x Re Im Persamaan gelombang elektron bebas Energi elektron bebas

31 Aplikasi Persamaan Schrödinger
Elektron di Sumur Potensial yang Dalam L I II III 1 2 3 V=0 V= x Daerah I dan daerah III adalah daerah-daerah dengan V = , daerah II, 0 < x < L, V = 0 Elektron yang berada di daerah II terjebak dalam “sumur potensial” Sumur potensial ini dalam karena di daerah I dan II V =  Fungsi gelombang Probabilitas ditemukannya elektron Energi elektron

32 Probabilitas ditemukan elektron
Aplikasi Persamaan Schrödinger Fungsi gelombang, probabilitas ditemukannya elektron, dan energi elektron, tergantung dari lebar sumur, L Fungsi gelombang x L * a). n = 1 * L b).n = 2 * L c). n = 3 Probabilitas ditemukan elektron Energi elektron

33 Aplikasi Persamaan Schrödinger
Pengaruh lebar sumur pada tingkat-tingkat energi L L’ n = 3 = 2 = 1 V V’ Makin lebar sumur potensial, makin kecil perbedaan antara tingkat-tingkat energi

34 Aplikasi Persamaan Schrödinger
Elektron di Sumur Potensial yang Dangkal Probabilitas keberadaan elektron tergantung dari kedalaman sumur L a) * V E L b) * E L c) * E L a d) * Makin dangkal sumur, kemungkinan keberadaan elektron di luar sumur makin besar Jika diding sumur tipis, elektron bisa “menembus” dinding potensial

35 Aplikasi Persamaan Schrödinger
Sumur tiga dimensi x z y Lx Ly Lz Arah sumbu-x Persamaan ini adalah persamaan satu dimensi yang memberikan energi elektron: Untuk tiga dimensi diperoleh: Tiga nilai energi sesuai arah sumbu

36 Konfigurasi Elektron Dalam Atom
BAB 5 Konfigurasi Elektron Dalam Atom

37 Persamaan Schrödinger dalam Koordinat Bola

38 inti atom berimpit dengan titik awal koordinat
Persamaan Schrödinger, Dalam Koordinat Bola Persamaan Schrödinger dalam Koordinat Bola r x y z elektron inti atom inti atom berimpit dengan titik awal koordinat persamaan Schrödinger dalam koordinat bola Jika kita nyatakan: kita peroleh persamaan yang berbentuk mengandung r tidak mengandung r salah satu kondisi yang akan memenuhi persamaan ini adalah jika keduanya = 0

39 Persamaan Schrödinger, Dalam Koordinat Bola
Persamaan yang mengandung r saja fungsi gelombang R hanya merupakan fungsi r  simetri bola kalikan dengan kalikan dengan dan kelompokkan suku-suku yang berkoefisien konstan Ini harus berlaku untuk semua nilai r Salah satu kemungkinan:

40 Persamaan Schrödinger, Dalam Koordinat Bola
salah satu solusi: Inilah nilai E yang harus dipenuhi agar R1 merupakan solusi dari kedua persamaan Energi elektron pada status ini diperoleh dengan masukkan nilai-nilai e, m, dan h Probabilitas keberadaan elektron dapat dicari dengan menghitung probabilitas keberadaan elektron dalam suatu “volume dinding” bola yang mempunyai jari-jari r dan tebal dinding r.

41 Persamaan Schrödinger, Dalam Koordinat Bola
probabilitas maksimum ada di sekitar suatu nilai r0 sedangkan di luar r0 probabilitas ditemukannya elektron dengan cepat menurun keberadaan elektron terkonsentrasi di sekitar jari-jari r0 saja Inilah struktur atom hidrogen yang memiliki hanya satu elektron di sekitar inti atomnya dan inilah yang disebut status dasar atau ground state

42 Persamaan Schrödinger, Dalam Koordinat Bola
Adakah Solusi Yang Lain? x L * a). n = 1 * L b).n = 2 * L c). n = 3 Kita ingat: Energi Elektron terkait jumlah titik simpul fungsi gelombang solusi yang lain: R1 R3 R2 r[Å] R bertitik simpul dua bertitik simpul tiga Solusi secara umum: polinom

43 bilangan kuantum prinsipal Tingkat-Tingkat Energi Atom Hidrogen
Persamaan Schrödinger, Dalam Koordinat Bola probabilitas keberadaan elektron Pe1 Pe2 Pe3 r[Å] Pe n 13,6 3,4 1,51 energi total [ eV ] ground state  10,2 eV  1,89 eV bilangan kuantum prinsipal Tingkat-Tingkat Energi Atom Hidrogen

44 Persamaan Schrödinger, Dalam Koordinat Bola
Momentum Sudut Momentum sudut juga terkuantisasi bilangan bulat positif Momentum sudut ditentukan oleh dua macam bilangan bulat: l : menentukan besar momentum sudut, dan ml : menentukan komponen z atau arah momentum sudut Nilai l dan ml yang mungkin : dst.

45 Persamaan Schrödinger, Dalam Koordinat Bola
l disebut bilangan kuantum momentum sudut, atau bilangan kuantum azimuthal bilangan kuantum l 1 2 3 4 5 simbol s p d f g h degenerasi 7 9 11 ml adalah bilangan kuantum magnetik

46 bilangan kuantum utama
Persamaan Schrödinger, Dalam Koordinat Bola Bilangan Kuantum Ada tiga bilangan kuantum. bilangan kuantum utama, n, yang menentukan tingkat energi; bilangan kuantum momentum sudut, atau bilangan kuantum azimuthal, l; bilangan kuantum magnetik, ml . n : 13,6 3,4 1,51 energi total [ eV ] Bohr bilangan kuantum utama 2s, 2p 1s 3s, 3p, 3d lebih cermat (4) Spin Elektron:  ½ dikemukakan oleh Uhlenbeck

47 Kandungan elektron setiap tingkat energi
Persamaan Schrödinger dalam Koordinat Bola Konfigurasi Elektron Dalam Atom Netral Kandungan elektron setiap tingkat energi n status momentum sudut Jumlah tiap tingkat s/d s p d f 1 2 6 8 10 3 18 28 4 14 32 60

48 Persamaan Schrödinger dalam Koordinat Bola
Orbital inti atom 1s 2s inti atom

49 Persamaan Schrödinger dalam Koordinat Bola
Penulisan konfigurasi elektron unsur-unsur H: 1s1; He: 1s2 Li: 1s2 2s1; Be: 1s2 2s2; B: 1s2 2s2 2p1; C: 1s2 2s2 2p2; N: 1s2 2s2 2p3; O: 1s2 2s2 2p4; F: 1s2 2s2 2p5; Ne: 1s2 2s2 2p dst

50 tingkat 4s sedikit lebih rendah dari 3d
Persamaan Schrödinger dalam Koordinat Bola Diagram Tingkat Energi energi tingkat 4s sedikit lebih rendah dari 3d

51 Persamaan Schrödinger dalam Koordinat Bola
Pengisian Elektron Pada Orbital H: pengisian 1s; He: pemenuhan 1s; Li: pengisian 2s; Be: pemenuhan 2s; B: pengisian 2px dengan 1 elektron; C: pengisian 2py dengan 1 elektron; N: pengisian 2pz dengan 1 elektron; O: pemenuhan 2px; F: pemenuhan 2py; Ne: pemenuhan 2pz.

52 Konfigurasi Elektron Dalam Atom
Tingkat energi 4s lebih rendah dari 3d. Hal ini terlihat pada perubahan konfigurasi dari Ar (argon) ke K (kalium). Ar: 1s2 2s2 2p6 3s2 3p6 K: 1s2 2s2 2p6 3s2 3p s1 (bukan 3d1) Ca: 1s2 2s2 2p6 3s2 3p s2 (bukan 3d2) Sc: 1s2 2s2 2p6 3s2 3p6 3d1 4s2 (orbital 3d baru mulai terisi setelah 4s penuh) Y: 1s2 2s2 2p6 3s2 3p6 3d2 4s2 (dan unsur selanjutnya pengisian 3d sampai penuh)

53 Konfigurasi Elektron Dalam Atom
Blok-Blok Unsur 1 H 1s1 2 He 1s2 3 Li [He] 2s1 4 Be 2s2 5 B 2p1 6 C 2p2 7 N 2p3 8 O 2p4 9 F 2p5 10 Ne 2p6 11 Na [Ne] 3s1 12 Mg 3s2 13 Al 3p1 14 Si 3p2 15 P 3p3 16 S 3p4 17 Cl 3p5 18 Ar 3p6 19 K [Ar] 4s1 20 Ca 4s2 21 Sc 3d1 22 Ti 3d2 23 V 3d3 24 Cr 3d5 25 Mn 26 Fe 3d6 27 Co 3d7 28 Ni 3d8 29 Cu 3d10 30 Zn 31 Ga 4p1 32 Ge 4p2 33 As 4p3 34 Se 4p4 35 Br 4p5 36 Kr 4p6 Blok s Blok d Blok p pengisian orbital s pengisian orbital d pengisian orbital p

54 Ionisasi dan Energi Ionisasi
Energi ionisasi adalah jumlah energi yang diperlukan untuk melepaskan elektron terluar suatu unsur guna membentuk ion positif bermuatan +1. Energi ionisasi dalam satuan eV disebut juga potensial ionisasi. Potensial ionisasi didefinisikan sebagai energi yang diperlukan untuk melepaskan elektron yang paling lemah terikat pada atom. Pada atom dengan banyak elektron, pengertian ini sering disebut sebagai potensial ionisasi yang pertama, karena sesudah ionisasi yang pertama ini bisa terjadi ionisasi lebih lanjut dengan terlepasnya elektron yang lebih dekat ke inti atom.

55 Ionisasi dan Energi Ionisasi
Energi Ionisasi [eV] 1 H 13,6 2 He 24,5 3 Li 5,39 4 Be 9,32 5 B 8,29 6 C 11,2 7 N 14,6 8 O 9 F 17,4 10 Ne 21,6 11 Na 5,14 12 Mg 7,64 13 Al 5,98 14 Si 8,15 15 P 10,4 16 S 17 Cl 13,0 18 Ar 15,8 19 K 4,34 20 Ca 6,11 21 Sc 6,54 22 Ti 6,83 23 V 6,74 24 Cr 6,76 25 Mn 7,43 26 Fe 7,87 27 Co 7,86 28 Ni 7,63 29 Cu 7,72 30 Zn 9,39 31 Ga 6,00 32 Ge 7,88 33 As 9,81 34 Se 9,75 35 Br 11,8 36 Kr

56 Energi ionisasi turun setiap kali pergantian blok unsur
Ionisasi dan Energi Ionisasi s p d Di setiap blok unsur, energi ionisasi cenderung meningkat jika nomer atom makin besar Energi ionisasi turun setiap kali pergantian blok unsur

57 Afinitas Elektron Afinitas Elektron
Afinitas elektron adalah energi yang dilepaskan jika atom netral menerima satu elektron membentuk ion negatif bermuatan 1. Afinitas elektron dinyatakan dengan bilangan negatif, yang berarti pelepasan energi. Afinitas elektron merupakan ukuran kemampuan suatu unsur untuk menarik elektron, bergabung dengan unsur untuk membentuk ion negatif. Makin kuat gaya tarik ini, berarti makin besar energi yang dilepaskan. Gaya tarik ini dipengaruhi oleh jumlah muatan inti atom, jarak orbital ke inti, dan screening (tabir elektron).

58 Ikatan Atom dan Susunan Atom
BAB 6 Ikatan Atom dan Susunan Atom

59 Konfigurasi Unsur Bilangan Kuantum :
Bilangan kuantum : prinsipal: n = 1, 2, 3, dst azimuthal: l = 0, 1, 2, 3 : s, p, d, f magnetik: ml = l sampai +l spin elektron: ms = +1/2 dan 1/2 Pauli Exclusion Prinsiple : setiap status hanya dapat ditempati tidak lebih dari satu elektron

60 Konfigurasi Elektron Unsur pada Ground State
1 H 1s1 2 He 1s2 3 Li [He] 2s1 4 Be 2s2 5 B 2p1 6 C 2p2 7 N 2p3 8 O 2p4 9 F 2p5 10 Ne 2p6 11 Na [Ne] 3s1 12 Mg 3s2 13 Al 3p1 14 Si 3p2 15 P 3p3 16 S 3p4 17 Cl 3p5 18 Ar 3p6 19 K [Ar] 4s1 20 Ca 4s2 21 Sc 3d1 22 Ti 3d2 23 V 3d3 24 Cr 3d5 25 Mn 26 Fe 3d6 27 Co 3d7 28 Ni 3d8 29 Cu 3d10 30 Zn 31 Ga 4p1 32 Ge 4p2 33 As 4p3 34 Se 4p4 35 Br 4p5 36 Kr 4p6 37 Rb [Kr] 5s1 38 Sr 5s2 39 Y 4d1 40 Zr 4d2 41 Nb 4d4 42 Mo 4d5 43 Tc 4d6 44 Ru 4d7 45 Rh 4d8 46 Pd 4d10 47 Ag 48 Cd 49 In 5p1 50 Sn 5p2 51 Sb 5p3 52 Te 5p4 53 I 5p5 54 Xe 5p6 55 Cs [Xe] 6s1 56 Ba 6s2 57 La 5d1 58 Ce 4f1 59 Pr 4f3 60 Nd 4f4 61 Pm 4f5 62 Sm 4f6 63 Eu 4f7 64 Gd 65 Tb 4f9 66 Dy 4f10 67 Ho 4f11 68 Er 4f12 69 Tm 4f13 70 Yb 4f14 71 Lu 72 Hf 5d2 73 Ta 5d3 74 W 5d4 75 Re 5d5 76 Os 5d6 77 Ir 5d7 78 Pt 5d9 79 Au 5d10 80 Hg 81 Tl 6p1 82 Pb 6p2 83 Bi 6p3 84 Po 6p4 85 At 6p5 86 Rn 6p6 87 Fr [Rn] 7s1 88 Ra 7s2 89 Ac 6d1 90 Th 6d2 91 Pa 5f2 92 U 5f3 93 Np 5f4 94 Pu 5f6 95 Am 5f7 96 Cm 97 Bk 98 Cf 99 Es 100 Fm 101 Md 102 No 103 Lw

61 Ikatan Atom Ikatan Primer : Kuat Ikatan Sekunder : Lemah Gaya Ikat
Gaya Ikat : gaya yang menyebabkan dua atom menjadi terikat; gaya ini terbentuk jika terjadi penurunan energi ketika dua atom saling mendekat Ikatan Primer : Kuat Ikatan Sekunder : Lemah Ikatan Kovalen Ikatan Hidrogen Ikatan van der Waals Ikatan Metal Ikatan Ion

62 terutama pada Ikatan metal yang terjadi antara sejumlah besar atom
Ikatan Atom Ikatan Berarah dan Tak Berarah Ikatan berarah: kovalen dipole permanen Ikatan tak berarah: metal ion van der Waals terutama terjadi pada ikatan kovalen antara unsur non metal: Nitrogen; Oksigen; Carbon; Fluor; Chlor terutama pada Ikatan metal yang terjadi antara sejumlah besar atom atom dengan ikatan tak berarah pada umumnya terkumpul secara rapat (kompak) dan mengikuti aturan geometris yang ditentukan oleh perbedaan ukuran atom atom dengan ikatan berarah akan terkumpul sedemikian rupa sehingga terpenuhi sudut ikatan walaupun kita bedakan ikatan atom berarah dan ikatan tak berarah, namum dalam kenyataan material bisa terbentuk dari campuran dua macam ikatan tersebut

63 Ikatan Atom Atom dengan ikatan tak berarah Contoh : H2
Sifat ikatan : Jumlah diskrit Arah tidak diskrit Contoh : H2 atom H memiliki 1 elektron di orbital 1s simetri bola namun ikatan 2 atom H tetap diskrit : setiap atom H hanya akan terikat dengan satu atom H yang lain

64 Ikatan Atom Atom dengan ikatan berarah z 2py 2px 2pz y x
Sifat ikatan : Jumlah diskrit Arah diskrit ditentukan oleh status kuantum dari elektron yang berperan dalam terbentuknya ikatan Hanya orbital yang setengah terisi yang dapat berperan dalam pembentukan ikatan kovalen; oleh karena itu jumlah susunan ikatan ditentukan oleh jumlah elektron dari orbital yang setengah terisi. Elektron di orbital selain orbital s akan membentuk ikatan yang memiliki arah spasial tertentu dan juga diskrit; misal orbital p akan membentuk ikatan dengan arah tegak lurus satu sama lain. 2pz 2px 2py x y z

65 Ikatan Atom Contoh : O  H + dipole 104o H +  F dipole 1 H: 1s1
8 O: [He] 2s2 2p4 1 H: 1s1 F H + dipole 9 F: [He] 2s2 2p5

66 Ikatan Atom Hibrida dari fungsi gelombang s dan p 6 C: [He] 2s2 2p2
Hibrida dari fungsi gelombang s dan p pada karbon membuat karbon memiliki 4 ikatan yang kuat mengarah ke susut-sudut tetrahedron Intan dan methane (CH4) terbentuk dari ikatan hibrida ini. 14 Si [Ne] 3s2 3p2 juga membentuk orbital tetrahedral seperti karbon karena hibrida 3s-sp, 4s-4p, dan 5s-5p, sama dengan 2s-2p. 32 Ge [Ar] 3d10 4s2 4p2 50 Sn [Kr] 4d10 5s2 5p2

67 Contoh: senyawa hidrokarbon yang terdiri hanya dari atom C dan H.
Ikatan Atom Karena ikatan kovalen adalah diskrit dalam jumlah maupun arah, maka terdapat banyak kemungkinan struktur ikatan tergantung dari ikatan mana yang digunakan oleh setiap atom. Contoh: senyawa hidrokarbon yang terdiri hanya dari atom C dan H. H | HCH Methane : CH4. Ikatannya adalah tetrahedral CH C H

68 Ikatan Atom Ethane : C2H6. Memiliki satu ikatan CC H H HCCH
| | HCCH Propane : C3H8. Memiliki dua ikatan CC H H H | | | HCCCH H H H dst.

69 Ikatan Atom Contoh: ethylene C2H4, Contoh: acetylene C2H2 H H HCCH
Rantaian panjang bisa dibentuk oleh ribuan ikatan CC. Simetri ikatan atom karbon dalam molekul ini adalah tetrahedral, dan satu ikatan CC dapat dibayangkan sebagai dua tetrahedra yang berikatan sudut-ke-sudut. Variasi ikatan bisa terjadi sebab tetrahedra pengikat, selain berikatan sudut-ke-sudut dapat pula berikatan sisi-ke-sisi (ikatan dobel) dan juga berikatan bidang-ke-bidang (ikatan tripel). Contoh: ethylene C2H4, Contoh: acetylene C2H2 H H | | HCCH HCCH

70 Ikatan Atom Peningkatan kekuatan ikatan sebagai hasil dari terjadinya ikatan multiple disertai penurunan jarak antar atom karbon. 1,54 Ä pada ikatan tunggal, 1,33 Ä pada ikatan dobel, 1,20 Ä pada ikatan tripel. Ikatan CC juga bisa digabung dari ikatan tunggal dan ikatan dobel, seperti yang terjadi pada benzena.

71 Susunan Atom, Atom Berikatan Tak Berarah dan Sama Besar
Susunan Atom-atom yang Berikatan Tak Berarah Atom berukuran sama Atom-atom material padat akan terkumpul secara ringkas / kompak menempati ruang sekecil mungkin. Dengan cara ini jumlah ikatan per satuan volume menjadi maksimum yang berarti energi ikatan per satuan volume menjadi minimum. Sebagai pendekatan pertama kita memandang atom sebagai kelereng keras. Secara geometris, ada 12 kelereng yang dapat berposisi mengelilingi 1 kelereng (terletak di pusat) dan mereka saling menyentuh satu sama lain. Ada 2 macam susunan kompak yang teramati pada banyak struktur metal dan elemen mulia, yaitu hexagonal close-packed (HCP) dan face-centered cubic (FCC).

72 Hexagonal Closed-Packed (HCP) Face-Centered Cubic (FCC)
Susunan Atom, Atom Berikatan Tak Berarah dan Sama Besar Hexagonal Closed-Packed (HCP) Face-Centered Cubic (FCC) 6 atom mengelilingi 1 atom di bidang tengah 6 atom mengelilingi 1 atom di bidang tengah 3 atom di bidang atas, tepat di atas 3 atom yang berada di bidang bawah, 3 atom di bidang atas, berselang-seling di atas 3 atom di bidang bawah,

73 Susunan Atom, Atom Berikatan Tak Berarah dan Sama Besar
Semua elemen mulia membentuk struktur kompak jika membeku pada temperatur sangat rendah, Sekitar 2/3 dari jenis metal membentuk struktur HCP atau FCC pada temperatur kamar. 1/3 dari jenis metal yang tidak membentuk struktur struktur kompak pada temperatur kamar adalah metal alkali (Na, K, dll) dan metal transisi (Fe, Cr, W, dsb). Mereka cenderung membentuk struktur body-centered cubic (BCC). Walaupun kurang kompak, susunan ini memiliki energi total relatif rendah. Kebanyakan metal alkali berubah dari BCC ke FCC atau HCP pada temperatur yang sangat rendah. Hal ini menunjukkan bahwa susunan kurang kompak yang terjadi pada temperatur kamar adalah akibat dari pengaruh energi thermal Susunan BCC pada metal transisi diduga sebagai akibat dari ikatan metal ini yang sebagian berupa ikatan kovalen (yang merupakan ikatan berarah).

74 Susunan Atom, Atom Berikatan Tak Berarah dan Tidak Sama Besar
Susunan Atom-atom yang Berikatan Tak Berarah Atom berukuran tidak sama Ikatan ion membentuk struktur yang terdiri dari atom-atom yang berbeda ukuran karena anion dan kation pada umumnya sangat berbeda ukuran. Perbedaan ini terjadi karena transfer elektron dari atom yang elektro-positif ke atom yang elektronegatif Membuat ukuran anion > kation. Anion : ion negatif sebagai hasil dari atom elektronegatif yang memperoleh tambahan elektron. Kation : ion positif sebagai hasil dari atom elektropositif yang kehilangan satu atau lebih elektron. Ikatan ini tak berarah dan juga tidak diskrit, namun pada skala besar kenetralan harus tetap terjaga.

75 Susunan Atom, Atom Berikatan Tak Berarah dan Tidak Sama Besar
Bilangan Koordinasi Bilangan yang menunjukkan perbandingan jumlah ion elemen A yang mengelilingi ion elemen K yang lebih kecil disebut bilangan koordinasi (Ligancy). Bilangan Koordinasi tergantung dari perbedaan radius antara Kation dan Anion makin besar perbedaannya, ligancy akan semakin kecil. [2] Bilangan Koordinasi Rasio Radius Kation / Anion Polyhedron Koordinasi Packing 2 0 – 0,155 garis linier 3 0,155 – 0,225 segitiga triangular 4 0,225 – 0,414 tetrahedron Tetrahedral 6 0,414 – 0,732 oktahedron Octahedral 8 0,732 – 1,0 kubus cubic 12 1,0 HCP FCC

76 Atom dengan ikatan tak terarah : Atom berukuran tidak sama
Susunan Atom, Atom Berikatan Tak Berarah dan Tidak Sama Besar Atom dengan ikatan tak terarah : Atom berukuran tidak sama Senyawa / Metal rK / rA Ligancy teramati Ba2O3 0,14 3 BeS 0,17 4 BeO 0,23 SiO2 0,29 LiBr 0,31 6 MgO 0,47 MgF2 0,48 TiO2 0,49 NaCl 0,53 CaO 0,71 KCl 0,73 CaF2 8 CaCl 0,93 BCC Metal 1,0 FCC Metal 12 HCP Metal [2]

77 Susunan Atom, Atom Berikatan Tak Berarah dan Tidak Sama Besar
Rasio radius di mana anion saling menyentuh dan juga menyentuh kation sentral disebut rasio radius kritis, sebab di bawah rasio ini jarak kation-anion menjadi lebih besar dibanding jarak keseimbangan antar ion. Polyhedra yang terbentuk dengan menghubungkan pusat-pusat anion yang mengelilingi kation sentral disebut polihedra anion atau polihedra koordinasi. HCP FCC

78 Peran Ikatan Atom Polihedra ikatan dan polihedra koordinasi dapat dilihat sebagai sub-unit yang jika disusun akan membentuk struktur padatan tiga dimensi. C H HCP Cara bagaimana mereka tersusun akan menentukan apakah material berbentuk kristal atau nonkristal (gelas) dan jika berbentuk kristal struktur kristalnya akan tertentu. Polihedra ini bukan besaran fisis tetapi hanya merupakan sub-unit yang lebih mudah dibayangkan daripada atom, dan dengan menggunakan pengertian ini dapat dilakukan pembahasan mengenai struktur lokal secara terpisah dari struktur besarnya (struktur makro).

79 Peran Ikatan Atom Contoh: methane, CH4, titik leleh 184oC;
Polihedra koordinasi berperilaku sebagai suatu unit yang erat terikat jika valensi atom sentral lebih dari setengah dari total valensi atom yang terikat dengannya. Jika valensi atom sentral sama dengan valensi total atom yang mengelilinginya maka sub-unit itu adalah molekul. Titik leleh suatu material bergantung dari kekuatan ikatan atom. Ia makin rendah jika polihedra sub-unit terbangun dari kelompok atom yang diskrit, yang terikat satu sama lain dengqan ikatan sekunder dibandingkan dengan bila ikatannya primer. Contoh: methane, CH4, titik leleh 184oC; ethane, C2H6, titik leleh 172oC; polyethylene, titik leleh 125oC; polyethylene saling terikat dengan ikatan C-C dapat stabil sampai 300oC.

80 Mengenal Sifat Material
Courseware Mengenal Sifat Material (1) Sudaryatno Sudirham


Download ppt "Mengenal Sifat Material #1 Atom, Ikatan Atom, Susunan Atom"

Presentasi serupa


Iklan oleh Google