Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehCahya Tetaplah Telah diubah "9 tahun yang lalu
1
Selamat Datang Dalam Kuliah Terbuka Ini
2
Kuliah terbuka kali ini berjudul “Mengenal Sifat Material I”
3
Disajikan oleh Sudaryatno Sudirham melalui www.darpublic.com
4
Sesi 3 Persamaan Schrödinger
5
Relasi Energi Elektron Sebagai Partikel
Energi Elektron = Energi kinetik + Energi potensial Ini adalah relasi fisika. Jika elektron dinyatakan sebagai gelombang yang merupakan fungsi dari posisi x dan waktu t, maka diperlukan operator matematik Operator matematik tersebut , jika dioperasikan pada fungsi gelombang haruslah dapat memberikan pernyataan matematik yang ekivalen dengan pernyataan fisika untuk energi elktron Operator matematik yang diperlukan adalah: Operator E, yang jika dioperasikan pada memberikan pernyataan ekivalen energi, yaitu ruas kiri relasi energi elektron Operator p, yang jika dioperasikan pada memberikan pernyataan ekivalen energi kinetik, yaitu suku pertama ruas kanan Operator x yang memberikan posisi seperti pada suku kedua ruas kanan
6
Jika diturunkan terhadap waktu: Jika diturunkan terhadap posisi:
Operator Gelombang yang mewakili elektron adalah paket gelombang yang merupakan fungsi x dan t : Operator energi: Jika diturunkan terhadap waktu: Operator momentum Jika diturunkan terhadap posisi: Operator posisi tetap: x
7
Hamiltonian Relasi fisika dipandang sebagai sebuah fungsi H:
Jika Operator E, p, x dioperasikan pada fungsi gelombang Persamaan Schrödinger satu dimensi Persamaan Schrödinger tiga dimensi
8
Persamaan Schrödinger Bebas Waktu
Aplikasi persamaan Schrödinger dalam banyak hal hanya berkaitan dengan energi potensial, yaitu besaran yang merupakan fungsi posisi. Jika peubah posisi dan peubah waktu dalam persamaan Schrodinger dapat dipisahkan, dapat diperoleh persamaan yang hanya merupakan fungsi posisi Nyatakan Satu dimensi Tiga dimensi
9
Fungsi Gelombang Persamaan Schrödinger adalah persamaan diferensial parsial dengan adalah fungsi gelombang dengan pengertian bahwa adalah probabilitas keberadaan elektron pada waktu t tertentu dalam volume dx dy dz di sekitar titik (x, y, z) Jadi persamaan Schrödinger tidak menentukan posisi elektron melainkan memberikan probabilitas bahwa ia akan ditemukan di sekitar posisi tertentu. Kita juga tidak dapat mengatakan secara pasti bagaimana elektron bergerak sebagai fungsi waktu karena posisi dan momentum elektron dibatasi oleh prinsip ketidakpastian Heisenberg
10
Persyaratan Fungsi Gelombang
Elektron sebagai suatu yang nyata harus ada di suatu tempat. Oleh karena itu integral untuk semua posisi harus sama dengan 1 Fungsi gelombang , harus kontinyu sebab jika terjadi ketidak-kontinyuan hal itu dapat ditafsirkan sebagai rusaknya elektron, suatu hal yang tidak dapat diterima. Turunan fungsi gelombang terhadap posisi juga harus kontinyu, karena turunan fungsi gelombang terhadap posisi terkait dengan momentum elektron. Oleh karena itu persyaratan ini dapat diartikan sebagai persayaratan kekontinyuan momentum. Fungsi gelombang harus bernilai tunggal dan terbatas sebab jika tidak akan berarti ada lebih dari satu kemungkinan keberadaan elektron Fungsi gelombang tidak boleh sama dengan nol di semua posisi sebab kemungkinan keberadaan elektron haruslah nyata, betapapun kecilnya
11
Persamaan Schrödinger Satu Dimensi
Untuk Elektron Bebas, yaitu elektron yang tak dipengaruhi medan potensial persamaan menjadi: Solusi persamaan: harus berlaku untuk semua x
12
Inilah solusi persamaan yang dicari
Solusi ini memiliki bilangan gelombang Bilangan gelombang ini memberikan nilai energi
13
Elektron di Sumur Potensial yang Dalam
L I II III 1 2 3 V=0 V= x Sumur potensial yang dalam digambarkan sebagai daerah-II yang tidak mengandung pengaruh potensial, diapit oleh daerah-I dan daerah-III dimana terdapat pengaruh potensial tak hingga besarnya Di daerah-I dan daerah-III V = , di daerah II, 0 < x < L, V = 0 Untuk daerah-II Probabilitas keberadaan elektron di daerah-II ini adalah yang ternyata merupakan fungsi n
14
Jika dimasukkan nilai k2 akan diperoleh energi elektron
Karena di daerah II V = 0, maka bilangan gelombang di daerah ini adalah (elektron bebas) Jika dimasukkan nilai k2 akan diperoleh energi elektron x L * a). n = 1 * L b).n = 2 * L c). n = 3 dan * di daerah II Energi elektron
15
Pengaruh lebar sumur pada tingkat-tingkat energi
V n = 3 = 2 = 1 L ' V' Makin lebar sumur, makin kecil perbedaan energi antara satu tingkat dengan tingkat berikutnya sesuai dengan formula energi
16
Elektron di Sumur Potensial yang Dangkal
* V E L b) * E L c) * E L a d) * Jika sumur dangkal, probabilitas keberadaan elektron di luar sumur tidak nol Jika sumur dangkal dan dinding sumur tipis, probabilitas keberadaan elektorn di luar sumur tidak nol, dengan menembus dinding sumur Elektron menembus dinding potensial dikenal dengan peristiwa tunelling
17
Sumur tiga dimensi x z y Lx Ly Lz Jika peubah dapat dipisah:
18
Persamaan untuk arah masing-masing sumbu koordinat
19
Salah satu sumbu koordinat
Persamaan ini adalah persamaan diferensial linier homogen orde kedua yang telah pernah kita temui pada waktu kita membahas elektron yang terjebak dalam sumur potensial satu dimensi Oleh karena itu energi untuk masing-masing sumbu koordinat dapat diperoleh, analog dengan kasus sumur potensial yang dalam
20
Mengenal Sifat Material I
Kuliah Terbuka Mengenal Sifat Material I Sesi-3 Sudaryatno Sudirham
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.