Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Mengenal Sifat Material

Presentasi serupa


Presentasi berjudul: "Mengenal Sifat Material"— Transcript presentasi:

1 Mengenal Sifat Material
Sifat Listrik Metal

2 Cakupan Bahasan Dalam melihat sifat listrik material, kita hanya akan memperhatikan material metal (yang memiliki konduktivitas listrik yang baik) dan material dielektrik (yang memiliki konduktivitas listrik yang buruk). Material semikonduktor tidak kita tinajau di sini namun dapat dipelajari bersamaan dengan pelajaran elektronika.

3 Sifat Listrik Metal

4 Konduktor Isolator Material e [siemens] Perak 6,3107 Tembaga
[6] Konduktor Isolator Material e [siemens] Perak 6,3107 Tembaga 5,85107 Emas 4,25107 Aluminium 3,5107 Tungsten 1,82107 Kuningan 1,56107 Besi 1,07107 Nickel 1,03107 Baja 0,7107 Stainless steel 0,14107 Material e [siemens] Gelas (kaca) 2  3105 Bakelit 1  21011 Gelas (borosilikat) 1010  1015 Mika 1011  1015 Polyethylene 1015  1017

5 Model Klasik Sederhana

6 kuat medan [volt/meter]
Jika pada suatu material konduktor terjadi perbedaan potensial, arus listrik akan mengalir melalui konduktor tersebut kuat medan [volt/meter] kerapatan arus [ampere/meter2] resistivitas [m] konduktivitas [siemens]

7 Medan listrik E memberikan gaya dan percepatan pada elektron sebesar
Karena elektron tidak terakselerasi secara tak berhingga, maka dapat dibayangkan bahwa dalam pergerakannya ia harus kehilangan energi pada waktu menabrak materi pengotor ataupun kerusakan struktur pada zat padat. Jika setiap tabrakan membuat elektron kembali berkecepatan nol, dan waktu antara dua tabrakan berturutan adalah 2 maka kecepatan rata-rata adalah:

8 kerapatan elektron bebas
benturan Model Klasik Sederhana kecepatan waktu 2 4 6 kerapatan arus Jika tak ada medan listrik, elektron bebas bergerak cepat pada arah yang acak sehingga tak ada aliran elektron netto. Medan listrik akan membuat elektron bergerak pada arah yang sama. kerapatan elektron bebas

9 Teori Drude-Lorentz Tentang Metal

10 1900: Drude mengusulkan bahwa konduktivitas listrik tinggi pada metal dapat dijelaskan sebagai kontribusi dari elektron valensi yang dianggap dapat bergerak bebas dalam metal, seperti halnya molekul gas bergerak bebas dalam suatu wadah. Gagasan Drude ini dikembangkan lebih lanjut oleh Lorentz. Elektron dapat bergerak bebas dalam kristal metal pada potensial internal yang konstan. Ada dinding potensial pada permukaan metal, yang menyebabkan elektron tidak dapat meninggalkan metal. Semua elektron bebas berperilaku seperti molekul gas (mengikuti statistik Maxwell-Boltzmann); elektron ini memiliki distribusi energi yang kontinyu. Gerakan elektron hanya dibatasi oleh tabrakan dengan ion-ion metal.

11 Medan listrik E memberikan gaya dan percepatan pada elektron sebesar
Integrasi a terhadap waktu memberikan kecepatan elektron, yang disebut kecepatan drift :

12 Kecepatan drift ini berubah dari 0 sampai vdrift maks , yaitu kecepatan sesaat sebelum tabrakan dengan ion metal. Kecepatan drift rata-rata dapat didekati dengan: Jika jalan bebas rata-rata elektron adalah L maka waktu rata-rata antara tabrakan dengan tabrakan berikutnya adalah kecepatan thermal

13 Kerapatan arus adalah:

14 Model Pita Energi untuk Metal

15 Pita energi paling luar, jika ia hanya sebagian terisi dan padanya terdapat tingkat Fermi, disebut sebagai pita konduksi. Pada metal, pita valensi biasanya hanya sebagian terisi Sodium kosong celah energi kosong EF pita valensi terisi pita konduksi

16 Pada beberapa metal, pita valensi terisi penuh
Pada beberapa metal, pita valensi terisi penuh. Akan tetapi pita ini overlap dengan pita di atasnya yang kosong. Pita yang kosong ini memfasilitasi tingkat energi yang dengan mudah dicapai oleh elektron yang semula berada di pita valensi. Magnesium kosong EF terisi penuh pita valensi

17 Model Mekanika Gelombang

18 Dalam model mekanika gelombang, elektron dipandang sebagai paket gelombang, bukan partikel.
f = frekuensi DeBroglie k = bilangan gelombang Kecepatan grup dari paket gelombang adalah Karena E = hf , maka: Percepatan yang dialami elektron adalah

19 Sehingga percepatan elektron menjadi:
Percepatan yang dialami elektron adalah Percepatan ini terjadi karena ada medan listrik E, yang memberikan gaya sebesar eE Gaya sebesar eE memberikan laju perubahan energi kinetik pada elektron bebas sebesar Sehingga percepatan elektron menjadi:

20 percepatan elektron: Bandingkan dengan relasi klasik: Kita definisikan massa efektif elektron: Untuk elektron bebas m* = me . Untuk elektron dalam kristal m* tergantung dari energinya.

21 E k k1 +k1 celah energi sifat klasik
m* = me jika energinya tidak mendekati batas pita energi dan kurva E terhadap k berbentuk parabolik Pada kebanyakan metal m* = me karena pita energi tidak terisi penuh. Pada material yang pita valensinya terisi penuh m*  me

22 Teori Sommerfeld Tentang Metal

23 Kita lihat lagi Persamaan Schrödinger
Metal dilihat sebagai benda padat yang kontinyu, homogen, isotropik. Gambaran tentang elektron seperti pada teori Drude-Lorentz; elektron bebasa berada pada potensial internal yang konstan. Perbedaannya adalah bahwa elektron dalam sumur potensial mengikuti teori kuantum dan bukan mekanika klasik Berapa statuskah yang tersedia untuk elektron atau dengan kata lain bagaimanakah kerapatan status? Bagaimana elektron terdistribusi dalam status yang tersedia dan bagaimana mereka berpartisipasi dalam proses fisika? Kita lihat lagi Persamaan Schrödinger

24 Aplikasi Persamaan Schrödinger: Kasus 3 Dimensi
Sumur tiga dimensi x z y Lx Ly Lz

25 Aplikasi Persamaan Schrödinger; Kasus 3 Dimensi
Sumur tiga dimensi x z y Lx Ly Lz

26 Energi elektron : Energi elektron dinyatakan dalam momentumnya: sehingga : momentum :

27 Kwadran pertama ruang momentum (dua dimensi):
Tanda ± menunjukkan bahwa arah momentum bisa positif atau negatif. Pernyataan ini menunjukkan bahwa momentum terkuantisasi. px, py, pz membentuk ruang momentum tiga dimensi. Jika ruang momentum berbentuk kubus, maka satuan sisi kubus adalah h/2L Kwadran pertama ruang momentum (dua dimensi): px py setiap titik menunjukkan status momentum yang diperkenankan setiap status momentum menempati ruang sebesar h2/4L2 (kasus 2 dimensi).

28 Kwadran pertama ruang momentum (dua dimensi)
px py px py dp p setiap status momentum menempati ruang sebesar h2/4L2 tiga dimensi

29 Berapakah yang terisi? tiga dimensi py Karena maka dp p px
p dp Karena maka massa elektron di sini adalah massa efektif Inilah kerapatan status. Setiap status mencakup 2 spin Berapakah yang terisi?

30 Tingkat Energi FERMI

31 Densitas Status pada 0 K Status energi diisi oleh elektron valensi mulai dari tingkat terendah secra berurut ke tingkat yang lebih tinggi sampai seluruh elektron terakomodasi. Elektron pada status energi yang paling tinggi analog dengan elektron pada tingkat energi paling tinggi di sumur potensial. Elektron ini memerlukan tambahan energi sebesar work function untuk meninggalkan sumur potensial. Status energi paling tinggi, yaitu tingkat yang paling tinggi yang ditempati oleh elektron pada 0 K secara tentatif didefinsikan sebagai tingkat Fermi, EF. (Definisi ini sesungguhnya tidak lengkap, tetapi untuk sementara kita gunakan).

32 px py p dp Jika p adalah jarak dari titik pusat ke momentum paling luar, maka akan diperoleh status yang terisi. Status yang terisi adalah: Karena Energi Fermi:

33 Densitas & Status terisi pada 0 K
Densitas Status pada 0 K N(E) E EF  E1/2 Densitas & Status terisi pada 0 K Jumlah status yang terisi dihitung dari jumlah status momentum yang terisi dalam ruang momentum:

34 Jika elektron pada tingkat energi EF kita pandang secara klasik, relasi energi:
di mana TF adalah temperatur Fermi Pada tingkat energi EF sekitar 4 eV, sedang maka Jadi suatu elektron klasik berada pada sekitar K untuk setara dengan elektron pada tingkat Fermi.

35 elemen EF [eV] TF [oK10-4] Li 4,7 5,5 Na 3,1 3,7 K 2,1 2,4 Rb 1,8 Cs
Hasil Perhitungan [1] elemen EF [eV] TF [oK10-4] Li 4,7 5,5 Na 3,1 3,7 K 2,1 2,4 Rb 1,8 Cs 1,5 Cu 7,0 8,2 Ag 6,4 Au

36 Resistivitas

37 Menurut mekanika gelombang elektron bebas dalam kristal dapat bergerak tanpa kehilangan energi. Setiap kelainan pada struktur kristal akan menimbulkan hambatan pada gerakan elektron yang menyebabkan timbulnya resistansi listrik pada material. Bahkan pada 0o K, adanya resistansi dapat teramati pada material nyata sebab pengotoran, dislokasi, kekosongan, dan berbagai ketidaksempurnaan kristal hadir dalam material. Pada metal murni, resistivitas total merupakan jumlah dari dua komponen yaitu komponen thermal T, yang timbul akibat vibrasi kisi-kisi kristal, dan resistivitas residu r yang disebabkan adanya pengotoran dan ketidaksempurnaan kristal. konduktivitas Relasi Matthiessen: resistivitas total resistivitas residu resistivitas thermal

38 Eksperimen menunjukkan: [6]
200 300 oK 100 | Cu Cu, 1,12% Ni Cu, 2,16% Ni Cu, 3.32% Ni  [ohm-m]  108 1 2 3 4 5 6 Di atas temperatur Debye komponen thermal dari resistivitas hampir linier terhadap temperatur: Temperatur Debye: frekuensi maks osilasi konstanta Boltzmann 1,381023 joule/oK kecepatan rambat suara panjang gelombang minimum osilator

39 Relasi Nordheim: konstanta tergantung dari jenis metal dan pengotoran konsentrasi pengotoran 2% 3% 1% | r / 273 0,05 0,10 0,15 0,20 4% In dalam Sn Jika x << 1

40  Pengaruh Jenis Pengotoran pada Cu [6] 2,0108 2,5108 1,5108
| 2,0108 2,5108 1,5108  [ohm-meter] 0,05 0,10 0,15 0,20 T (293) Sn Ag Cr Fe P % berat

41 Emisi Elektron

42 Elektron bebas dalam metal tidak meninggalkan metal, kecuali jika mendapat tambahan energi yang cukup. eF EF Hampa Energi + x

43 Peristiwa photolistrik
3x lumen cahaya 2x lumen emitter collector x lumen A V Sumber tegangan variabel V0 V Pada tegangan ini semua elektron kembali ke katoda (emitter) Energi kinetik elektron = e V0 Laju keluarnya elektron (arus) tergantung dari intensitas cahaya tetapi energi kinetiknya tidak tergantung intensitas cahaya

44 Intensitas cahaya konstan tetapi panjang gelombang berubah
emitter collector cahaya A V Sumber tegangan variabel Intensitas cahaya konstan tetapi panjang gelombang berubah I V =6500Å (merah) =5500Å (hijau) =5000Å (biru) V01 V02 V03

45 Photon dengan energi hf diserap elektron di permukaan metal sehingga elektron tersebut mendapat tambahan energi. Jika pada awalnya elektron menempati tingkat energi tertinggi di pita konduksi dan bergerak tegak lurus ke arah permukaan, ia akan meninggalkan emitter dengan energi kinetik maksimum emitter collector cahaya A V Sumber tegangan variabel Ek maks= hf  e Energi yang diterima Energi untuk mengatasi hambatan di permukaan (dinding potensial)

46 cahaya emitter collector Ek maks Ek < Ek maks A hf e V EF
Sumber tegangan variabel tingkat energi terisi hf EF e Ek maks Ek < Ek maks

47 Jika V0 (yang menunjukkan energi kinetik) di-plot terhadap frekuensi:
emitter collector cahaya A V Sumber tegangan variabel Vo Slope = h/e Metal 1 Metal 2 f 1 2 Rumus Einstein:

48 Peristiwa Emisi Thermal
Pada temperatur tinggi, sebagian elektron memiliki energi kinetik yang lebih tinggi dari energi rata-rata elektron sehingga dapat melampaui work function ( e ). Jika arus cukup tinggi, terjadi saling tolak antara elektron di ruangan sehingga elektron dengan energi rendah tidak mencapai anoda. katoda A V vakum anoda Muatan ruang makin berpengaruh jika arus makin tinggi. Arus akan mencapai kejenuhan. pemanas I V V

49 Kejenuhan dapat diatasi dengan menaikkan V
Makin tinggi temperatur katoda, akan makin tinggi energi elektron yang keluar dari permukaan katoda, dan kejenuhan terjadi pada nilai arus yang lebih tinggi. T3 I V A V vakum pemanas katoda anoda T2 T1 V Kejenuhan dapat diatasi dengan menaikkan V V3 I T V2 V1

50 Persamaan Richardson-Dushman
Pada tegangan yang sangat tinggi, dimana efek muatan ruang teratasi secara total, semua elektron yang keluar dari katoda akan mencapai anoda. V = ∞ A V vakum pemanas katoda anoda I T V2 V1 Persamaan Richardson-Dushman kerapatan arus konstanta dari material k = konstanta Boltzman = 1,381023 joule/oK

51 Nilai  tergantung dari temperatur :
pada 0o K A V vakum pemanas katoda anoda koefisien temperatur pada kebanyakan metal murni Persamaan Richardson-Dushman menjadi:

52 Persamaan Richardson-Dushman
V vakum pemanas katoda anoda Linier terhadap

53 Beberapa Material Bahan Katoda
[6] Material katoda titik leleh [OK] temp. kerja work function [eV] A [106amp/m2 oK2 W 3683 2500 4,5 0,060 Ta 3271 2300 4,1 0,4 – 0,6 Mo 2873 2100 4,2 0,55 Th 2123 1500 3,4 0,60 Ba 983 800 2,5 Cs 303 290 1,9 1,62

54 Peristiwa Emisi Sekunder
Jika elektron dengan energi tinggi (yang disebut elektron primer) ditembakkan ke permukaan metal, elektron dapat keluar dari permukaan metal (yang disebut elektron sekunder). Energi kinetik elektron sekunder tidak harus tergantung dari energi kinetik elektron yang membentur permukaan. Efisiensi emisi sekunder dinyatakan sebagai rasio jumlah elektron sekunder, Is terhadap jumlah elektron primer yang membentur permukaan, Ip. Rasio ini disebut secondary emission yield, , dan merupakan fungsi dari energi kinetik berkas elektron yang membentur permukaan. Jika energi kinetik berkas elektron yang membentur permukaan terlalu rendah hanya sedikit dihasilkan emisi sekunder.

55 Jika energi kinetik berkas elektron yang membentur permukaan terlalu tinggi hanya sedikit juga dihasilkan emisi sekunder. Hal ini disebabkan karena elektron yang membentur permukaan metal sempat masuk (penetrasi) ke dalam metal sebelum terjadi benturan dengan elektron bebas dalam metal. Elektron bebas yang menerima tambahan energi mengalami tabrakan-tabrakan sebelum mencapai permukaan, dan mereka gagal keluar dari permukaan metal. maks Akibatnya adalah  sebagai fungsi dari energi berkas elektron, mempunyai nilai maksimum. Ek maks Ek

56 Emisi Sekunder emitter maks Ek [eV] Al 0,97 300 Cu 1,35 600 Cs 0,9
[6] emitter maks Ek [eV] Al 0,97 300 Cu 1,35 600 Cs 0,9 400 Mo 1,25 375 Ni 1,3 550 W 1,43 700 gelas 2,5 BeO 10,2 500 Al2O3 4,8 1300

57 Efek SCHOTTKY Dalam peristiwa emisi thermal telah disebutkan bahwa kenaikan medan listrik antara emitter dan anoda akan mengurangi efek muatan ruang. I V1 V2 V3 medan listrik tinggi V = eEx Medan yang tinggi juga meningkatkan emisi karena terjadi perubahan dinding potensial di permukaan katoda. penurunan work function eΔ∅ e∅ EF x0 Energi nilai maks dinding potensial Medan E memberikan potensial eEx pada jarak x dari permukaan + x

58 + x Peristiwa Emisi Medan
Hadirnya medan listrik pada permukaan katoda, selain menurunkan work function juga membuat dinding potensial menjadi lebih tipis. medan listrik sangat tinggi V = eEx penurunan work function eΔ∅ e∅ EF jarak tunneling Energi + x

59 Mengenal Sifat Material
Course Ware Mengenal Sifat Material Sifat Listrik Metal Sudaryatno Sudirham


Download ppt "Mengenal Sifat Material"

Presentasi serupa


Iklan oleh Google