Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
Dasar probabilitas
2
Sample space, sample points, events
Sample space,, adalah sekumpulan semua sample points,, yang mungkin; dimana Contoh 1. Melemparkan satu buah koin:={Gambar,Angka} Contoh 2. Menggelindingkan dadu: ={1,2,3,4,5,6} Contoh 3. Jumlah pelanggan dalam antrian: ={0,1,2,…} Contoh 4. Waktu pendudukan panggilan (call holding time): ={xx>0} Events A,B,C,… adalah himpunan bagian (yang dapat diukur) dari sample space Contoh 1. Angka genap pada sebuah dadu:A={2,4,6} Contoh 2. Tidak ada pelanggan yang mengantri : A={0} Contoh 3. Call holding time lebih dari 3 menit. A={xx>3} adalah kumpulan semua events Event yang pasti : sample space merupakan elemen dari Event yang tidak mungkin : himpunan kosong yang juga merupakan anggota
3
Kombinasi event Union (gabungan) :“A atau B” : AB={A atau B}
Irisan: “A dan B” : AB={A dan B} Komplemen : “bukan A”:Ac={A} Event A dan B disebut tidak beririsan (disjoint) bila : AB= Sekumpulan event {B1,B2,…} merupakan partisi dari event A jika (i) Bi Bj= untuk semua ij (ii) iBi =A
4
Probabilitas (peluang)
Probabilitas suatu event dinyatakan oleh P(A) P(A)[0,1] Sifat-sifat peluang
5
Conditional Probability (Peluang bersyarat)
Asumsikan bahwa P(B)>0 Definisi : Conditional probability dari suatu event A bila diketahui event B terjadi didefinisikan sebagai berikut Dengan demikian
6
Teorema Probabilitas Total
Bila {Bi} merupakan partisi dari sample space Lalu {ABi} merupakan partisi dari event A, maka berdasarkan sifat probabilitas yang ketujuh pada slide nomor 4 Kemudian asumsikan bahwa P(Bi)>0 untuk semua i. Maka berdasarkan uraian pada slide nomor 5 dapat didefinisikan teorema probabilitas total sbb
7
Contoh: Suatu berkas saluran terdiri dari 2 saluran :
P(k)= Prob bahwa saluran baik. P(0)=0,2; P(1)=0,3; P(2)=0,5 Dan E(k)=Prob bahwa suatu panggilan diblok, bila diketahui k saluran baik. E(0)=1;E(1)=2/3 dan E(2)=2/5 Berapa besar probabilitas suatu panggilan diblok?dan Berapa besar probabilitas suatu panggilan tidak di blok?
8
Di blok 1 0 sal.baik Tidak di blok 0,2 2/3 Di blok 0,3 1/3 1 sal baik Tidak di blok 0,5 2/5 Di blok 2 sal. baik 3/5 Tidak di blok
9
Jawab: Prob suatu panggilan di blok= P(0).E(0)+P(1).E(1) +P(2).E(2)=
0,2.1 +0,3.(1/3) +0,5.(2/5)=0,6 Prob suatu panggilan tidak di blok= 0,2.0 +0,3.(2/3)+0,5.(3/5) =0,4
10
Teorema Bayes Bila {Bi} merupakan partisi dari sample space
Asumsikan bahwa P(A)>0 dan P(Bi)>0 untuk semua i. Maka berdasarkan uraian pada slide nomor 5 Kemudian, berdasarkan teorema probabilitas total, kita peroleh Ini merupakan teorema Bayes Peluang P(Bi) disebut peluang a priori dari event Bi Peluang P(BiA) disebut peluang a posteriori dari event Bi (bila diketahui event A terjadi)
11
Kesalingbebasan statistik dari event (Statistical independence of event)
Definisi : Event A dan B saling bebas (independent) jika Dengan demikian Demikian pula
12
Peubah acak (random variables)
Definisi : Peubah acak X (yang merupakan bilangan riil [real-valued]) adalah fungsi bernilai riil dan dapat diukur yang didefinisikan pada sample space ;X: Setiap titik sample (sample points) wW dihubungkan dengan sebuah bilangan riil X(w) Dapat diukur memiliki arti bahwa semua himpunan yang berbentuk berasal dari kumpulan event , yaitu Peluang event yang seperti itu dinyatakan oleh P{X x}
13
Contoh Sebuah koin dilempar (menghasilkan head (H) atau tail (T)
Sample space: Misalnya peubah acak X merupakan jumlah total tail (T) dalam ketiga eksperimen pelemparan koin tersebut, maka :
14
Indikator dari suatu event
Misalkan A merupakan suatu event Definisi : indikator dari suatu event A adalah peubah acak yang didefinisikan sbb: Maka
15
Probability Distribution Function (PDF)
Definisi : PDF dari suatu peubah acak X adalah fungsi FX: [0,1] yang didefinisikan sebagai berikut PDF menentukan distribusi dari peubah acak Peluang P{XB}, dimana B dan {XB} Sifat
16
Kesalingbebasan statistik dari peubah acak (Statistical independence of random variables)
Definisi : Peubah acak X dan Y saling bebas jika untuk semua x dan y Definisi : Peubah acak X1, …,Xn saling bebas jika untuk semua i dan xi
17
Maximum dan minimum dari peubah acak yang saling bebas
Misalkan peubah acak X1,…,Xn saling bebas Bila Xmax:=max{X1,…,Xn}, maka Bila Xmin:=min{X1,…,Xn}, maka
18
Peubah acak diskrit Definisi : himpunan A disebut diskrit bila
Terbatas : A={x1,…,xn}, atau Tak terbatas : A={x1,x2,…} Definisi : peubah acak X disebut diskrit bila terdapat sebuah himpunan diskrit Sx sedemikian hingga Maka P{X=x} 0 untuk semua x Sx P{X=x} 0 untuk semua x Sx Himpunan Sx disebut himpunan nilai (value set)
19
Peluang titik (point probabilities)
Misalkan X adalah peubah acak diskrit Distribusi X ditentukan oleh peluang titik pi Definisi : probability mass function (pmf) dari X adalah merupakan fungsi pX: [0,1] yang didefinisikan sbb Pada kasus ini, PDF merupakan fungsi step
20
Contoh
21
Kesalingbebasan peubah acak
Peubah acak diskrit X dan Y dikatakan saling bebas jika dan hanya jika untuk semua xiSX dan yjSy
22
Ekspektasi (harapan,rataan)
Definisi : Harga ekspektasi (rata-rata/mean value) dari X dinyatakan oleh Catatan 1: ekspektasi akan ada hanya jika Catatan 2 : Jika , maka Sifat-sifat
23
Suatu berkas saluran terdiri dari 10 saluran: P(Xi) Xi.P(Xi)
Contoh: Suatu berkas saluran terdiri dari 10 saluran: Jumlah sal yang di duduki P(Xi) Xi.P(Xi) 1 2 3 4 5 6 7 8 9 10 0,20 0,19 0,16 0,13 0,10 0,07 0,05 0,04 0,03 0,02 0,01 0,32 0,39 0,40 0,35 0,30 0,28 0,24 0,18 2,75 Total 1
24
Nilai di atas menunjukkan harga rata-rata dari jumlah saluran yang di duduki terus menerus dalam 1 jam sibuk (A). Sehingga dari contoh, nilai 2,75 menunjukkan bahwa dalam 1 jam sibuk diharapkan 2,75 saluran di duduki.
25
1 Jam 1 2 10
26
Variance Definisi : Variance dari X didefinisikan sbb
Rumus yang bermanfaat Sifat-sifat
27
Covariance Definisi : Covariance antara X dan Y didefinisikan sbb
Rumus yang bermanfaat Sifat-sifat
28
Parameter lain yang berhubungan dengan distribusi
Deviasi standard dari X Koefisien perubahan (coefficient of variation) dari X Momen ke-k dari X
29
Rata-rata dari peubah acak IID
Misalkan X1,…,Xn saling bebas dan teridistribusi secara identik (independent and identically distributed [IID]) dengan m dan variance s2 Rata-rata-nya(average/sample mean) Maka
30
Law of large numbers (LLN)
31
Distribusi Bernoulli Menyatakan suatu eksperimen acak dengan dua keluaran yang mungkin Sukses (1) : “Probabilitas di duduki” (P) Gagal (0) : “Probabilitas bebas” (q= 1-P) Nilai 1 berpeluang p (nilai 0 untuk peluang 1-p)
32
Distribusi binomial Menyatakan jumlah sukses dalam sejumlah eksperimen acak yang saling bebas (masing-masing eksperimen bersifat Bernoulli); n = jumlah total eksperimen p = peluang sukses dalam suatu eksperimen
33
1 2 n Prob. P(X=i) saluran diduduki = P(x):
34
Contoh: Suatu berkas saluran terdiri dari 12 saluran, dengan probabilitas diduduki untuk setiap saluran 0,3. tentukan probabilitas: Tak ada saluran yang diduduki? 10 saluran diduduki?
35
Distribusi geometrik Menyatakan jumlah sukses yang terjadi sampai didapatkan kegagalan yang pertama dari sejumlah eksperimen acak yang saling bebas (masing-masing eksperimen bersifat Bernoulli) p = peluang sukses dalam suatu eksperimen
36
Sifat memoryless Distribusi geometrik mempunyai sifat memoryless yaitu untuk semua i,j {0,1…}
37
Minimum dari peubah acak geometrik
38
Distribusi Poisson Limit dari distribusi binomial dimana n dan p 0, sedemikian hingga np a
39
Contoh Asumsikan Maka jumlah panggilan yang aktif X ~ Bin(200,0.01)
200 pelanggan terhubung ke sentral lokal Trafik setiap pelanggan adalah 0.01 Pelanggan saling bebas Maka jumlah panggilan yang aktif X ~ Bin(200,0.01) Pendekatan Poisson X Poisson(2,0) Peluang titik
40
Sifat-sifat distribusi Poisson
Penjumlahan (sum) : Bila X1~Poisson(a1) dan X2~Poisson(a2) saling bebas, maka X1+ X2 ~Poisson(a1+ a2) Random sample : Misalkan X~Poisson(a) menyatakan jumlah elemen dalam suatu himpunan, dan Y menyatakan ukuran random sample dari himpunan tersebut (setiap elemen diambil secara saling bebas dengan peluang p), maka Y~Poisson (pa) Random sorting: Misalkan X dan Y seperti pada (ii), dan Z=X-Y, maka Y dan Z adalah saling bebas (bila X tidak diketahui) dan Z~Poisson ((1-p)a)
41
Peubah acak kontinu Definisi : peubah acak X kontinu jika terdapat fungsi yang dapat diintegralkan fX:+, sedemikian hingga untuk semua x Fungsi fX disebut probability density function (pdf) Himpunan SX, dimana fX>0 disebut value set Sifat-sifat
42
Contoh
43
Ekspektasi dan parameter lain
Ekspektasi (nilai rata-rata/mean value) dari X didefinisikan sbb Note 1: Ekspektasi ada hanya jika Note 2: Jika , maka Sifat sama dengan distribusi diskrit Parameter distrubusi lainnya didefinisikan dan memiliki sifat yang sama seperti pada distribusi diskrit
44
Distribusi Uniform (X~U(a,b), a<b)
45
Distribusi Eksponensial (X~Exp(l), l>0)
Versi kontinu dari distribusi geometrik (peluang gagal ldt)
46
Sifat memoryless Distribusi eksponensial mempunyai sifat memoryless untuk semua x,y(0,) P{X>x+yX>x}=P{X>y} Aplikasi Asumsikan bahwa call holding time terdistribusi secara eksponensial dengan mean (rata-rata) h Misalnya suatu panggilan telah berakhir selama x menit. Dengan sifat memoryless, hal ini memberi informasi tentang lamanya waktu holding time yang masih tersisa : juga terdistribusi seperti holding time yang asli Ekspektasi dari holding time sisa adalah selalu h
47
Minimum dari peubah acak eksponensial
48
Distribusi normal (Gaussian) ternormalisasi (X ~ N(0,1))
49
Distibusi normal (Gaussian)
50
Sifat-sifat distribusi Gaussian
51
Central Limit Theorem (CLT)
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.