Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
00:28:33
2
Hukum Hooke “Perubahan panjang (x) yang dialami sebuah pegas sebanding dengan besar gaya (F) yang dialaminya” Secara matematis : F x Tanda sebanding dapat diganti dengan tanda sama dengan, dengan syarat dimasukkan sebuah konstanta ke dalam persamaan tersebut, sehingga menjadi : F = - k . x Keterangan : F = Gaya yang dialami pegas (N) k = konstanta pegas (N/m) x = perubahan panjang pegas (m) Tanda negatif (–) menunjukkan arah gaya pemulih pada pegas yang berlawanan dengan arah gaya luar
3
Contoh soal : Barulah panjang pegas Hitung dulu jika diberi gaya 250 N
Dalam keadaan bebas, panjang sebuah pegas adalah 20 cm. Jika kemudian pegas tersebut diberi gaya sebesar 100 N, panjangnya menjadi 22 cm. Hitunglah panjang pegas tersebut jika diberi gaya 250 N! Jawab : Barulah panjang pegas jika diberi gaya 250 N dapat dihitung F = k . (x – x0) Hitung dulu konstanta pegas (k) ! F = k . x 250 = 5000 (x – 0,20) F = k . ( x – x0 ) 250 = 5000x – 1000 100 N = k . (0,22 – 0,20) m 1250 = 5000x 100 N = k . (0,02) m k = 100 N / (0,02) m x = 1250/5000 k = 5000 N/m x = ¼ m Dibutuhkan gaya 5000 N untuk membuat pegas tersebut bertambah panjang sebesar 1 meter x = 25 cm
4
Persamaan Simpangan Getaran
Pra-syarat pengetahuan : Kecepatan sudut () adalah besar sudut tempuh dibagi dengan waktu. Sudut yang ditempuh Waktu t T = ————— = — = — =2 f A A B A 1 putaran = 2 rad
5
Getaran adalah : “Gerak bolak-balik suatu benda yang melalui titik seimbangnya”
6
Persamaan Simpangan Getaran (y)
7
“Persamaan Simpangan”
Bagaimanakah bentuk “Persamaan Simpangan” sebuah getaran ? Simpangan (y) Amplitudo (A) Sin = y A y = A Sin y = A Sin Amplitudo y = A Sin (t) Simpangan y = A Sin (2/T) t Posisi seimbang y = A Sin (2f) t Keterangan : y = Simpangan (m) A = Amplitudo (m) t = waktu (s) T = Periode (s) f = frekuensi (Hz) = kecepatan sudut (rad/s)
8
Simpangan maksimum (ymax)
Simpangan maksimum (ymaks) disebut juga sebagai Amplitudo, karena : y = A Sin Nilai Sinus maks = 1 y = A Sin (t ) y = A Sin (2f) t y = A Sin (2/T) t y maks = A
9
Contoh Soal #1 Sebuah pegas bergetar dengan persamaan simpangan y = sin 100 πt. Tentukanlah : amplitudo, frekuensi, dan periode getaran tersebut Diketahui : y = sin 100 πt Ditanya : A, f, T …? Jawab : y = 1 sin 100 πt bentuk umum : y = A sin ωt Amplitudo = 1 m Frekuensi dan periode : ω = 2 π f 100π = 2π f f = 100π/2π f = 50 Hz T = 1/f = 1/50 = 0,02 sekon
10
Diket : T = 12 s y = ½3 A Tanya : t = …? Contoh Soal #2
00:28:34 Contoh Soal #2 Sebuah benda melakukan gerak harmonik dengan periode 12 s. Berapa waktu minimum yang dibutuhkan agar simpangannya sama dengan ½3 dari Amplitudonya ? Diket : T = 12 s y = ½3 A Tanya : t = …?
11
T = 12 s y = ½3 A t = 2 sekon Jawaban: y = A Sin (2/T) t
00:28:34 T = 12 s Jawaban: y = A Sin (2/T) t y = ½3 A ½3 A = A Sin (2/12)t 30t = 600 ½3 = Sin (2/12) t t = 600/30 ½3 = Sin (360/12) t t = 2 sekon ½3 = Sin (30t) Sin (30t) = ½3 (30t) = sin-1 (½3) Pada trigonometri : 2 = 360o atau = 180o
12
Cross check..! ½3 A = A ½3 y = A Sin [(2/T) t + 0] Simpangan (y)
½3 A = A Sin (2/12) 2 t (sekon) 2 (radian) (derajat) 1 ½3 ½2 ½3 A = A Sin (4/12) ½3 A = A Sin (2/6) ½3 A = A ½3
13
Simpangan (y) Contoh Soal #3 Dari grafik sinusoidal sebuah getaran berikut, tentukanlah : Amplitudo Periode Simpangan saat t = 1 s, t = 1,5 s, dan t = 2 s Waktu untuk mencapai simpangan (y) = –10 cm 20 cm t (sekon) (derajat) 2 (radian) -20 cm
14
Persamaan Kecepatan Getaran
Pra-syarat pengetahuan : v = dr/dt (“kecepatan = turunan posisi terhadap waktu”) = Cos t d(Sin t) dt (“turunan sin adalah cos”)
15
Persamaan Kecepatan Getaran
Kecepatan merupakan turunan posisi (= simpangan) terhadap waktu. v = dy dt Jadi, bentuk persamaan kecepatan pada Getaran adalah : y = A Sin t v = A Cos (t + 0) v = d(A Sin t) dt v = A d(Sin t) dt v = A Cos [(2f) t + 0] v = A Cos t = 2f v = A Cos [(2/T) t + 0] v = A Cos (t) = 2/T
16
Hubungan Persamaan Simpangan (y) dengan Persamaan Kecepatan (v)
y = A Sin (t + 0) v = A Cos (t + 0) Dari gambar segitiga yang menghubungkan Simpangan (y) dengan Amplitudo (A), didapat: Cos = A A cos (t + 0) = Substitusikan persamaan tersebut di atas ke -persamaan kecepatan (v) sebagai berikut : Maka didapat hubungan antara kecepatan (v) dan simpangan (y) sebagai berikut: = (t + 0) Simpangan (y) v = A Cos (t + 0) Amplitudo (A) v =
17
v maks = A Kecepatan maksimum (vmax)
Dari persamaan kecepatan getaran : v = A Cos (t + 0) Nilai Cosinus = 1 v = A Cos [(2f) t + 0] v = A Cos [(2/T) t + 0] Jika nilai cos mencapai maksimum : Maka didapat kecepatan maksimum : v maks = A
18
00:28:34 Contoh Soal Sebuah benda melakukan gerak harmonik dengan persamaan simpangan y = 5 sin 0,4t; dengan y dalam cm dan t dalam sekon. Kecepatan maksimum benda itu adalah … Diket : y = 5 sin 0,4 t bentuk persamaan umumnya adalah: y = A sin t berarti diketahui : A = 5 (cm) dan = 0,4 (rad/s) Tanya : vmax = …?
19
y = A sin t vmax = …? vmax = A vmax = 0,4 (rad/s) 5 (cm)
00:28:34 y = 5 sin 0,4 t bentuk persamaan umumnya adalah: y = A sin t berarti diketahui : A = 5 (cm) dan = 0,4 (rad/s) vmax = …? Tanya : vmax = A Jawab : vmax = 0,4 (rad/s) 5 (cm) vmax = 2 (cm/s) vmax = 2 x 10–2 (m/s)
20
Persamaan Percepatan Getaran
Pra-syarat pengetahuan : a = dv/dt “Percepatan = turunan kecepatan terhadap waktu” = – Sin t d(Cos t) dt “turunan cos adalah –sin”
21
Persamaan Percepatan Getaran
Percepatan merupakan turunan kecepatan terhadap waktu. a = dv dt Jadi, bentuk persamaan percepatan pada Getaran adalah : v = A Cos t a = - 2A Sin (t + 0) a = d(A Cos t) dt a = - 2A Sin [(2f) t + 0] a = A d(Cos t) dt a = - 2A Sin [(2/T) t + 0] a = A (-Sin t) a = -2A Sin (t)
22
Hubungan Persamaan Simpangan (y) dengan Persamaan Percepatan (a)
y = A Sin (t + 0) a = - 2A Sin (t + 0) Hubungan antara persamaan simpangan (y) dengan percepatan (a) adalah : a = - 2 A Sin(t + 0) y = A Sin (t + 0) Substitusikan persamaan simpangan (y) ke persamaan percepatan (a), sehingga didapat hubungan : a = - 2 y
23
Contoh Soal (Halaman 41 Nomor 3)
00:28:33 Contoh Soal (Halaman 41 Nomor 3) Sebuah partikel melakukan gerak harmonik dengan persamaan simpangan y = 10 sin 0,5t; dengan y dalam cm dan t dalam sekon. Hitung percepatan pada saat t = 2,5 sekon! Diket : y = 10 sin 0,5 t bentuk persamaan umumnya adalah: y = A sin t berarti diketahui : A = 10 (cm) dan = 0,5 (rad/s) a(t=2,5) = …? Tanya :
24
y = A sin t a(t=2,5)= …? y = 10 sin 0,5 t
00:28:34 Diket : y = 10 sin 0,5 t bentuk persamaan umumnya adalah: y = A sin t berarti diketahui : A = 10 (cm) dan = 0,5 (rad/s) Tanya : a(t=2,5)= …? a = - 2A Sin (t + 0) Jawab : a(t=2,5) = –(0,5)210 Sin (0,5 x 2,5 + 0) a(t=2,5) = –(2,5) x –(½2) a(t=2,5) = –(0,25) 10 Sin (1,25) a(t=2,5) = 1,252 m/s2 a(t=2,5) = –(2,5) Sin (1,25 x 1800) a(t=2,5) = –(2,5) Sin (2250)
25
00:28:34 Contoh Soal : Ketika sebuah bola digantung pada ujung pegas, pegas bertambah panjang sejauh 80 mm, periode pegas dan frekuensi pegas jika bola bergetar ke atas dan ke bawah adalah … a. b. c. d. e.
26
Sudut Fase & Fase Sudut Fase Fase Contoh Soal
27
SUDUT FASE () y = A sin (t + 0) = (t + 0)
11/04/2017 0:28 SUDUT FASE () adalah nilai yang terdapat di dalam sinus dari sebuah persamaan getaran. y = A sin (t + 0) = (t + 0) Satuan SUDUT FASE () adalah radian (rad)
28
FASE GETARAN () = t/T + 0
adalah hasil bagi SUDUT FASE () dengan 2𝜋 (2/T) t + 0 = ___ = _____________ 2 = t/T + 0 FASE GELOMBANG () tidak bersatuan
29
FASE GETARAN () Titik-titik yang berjarak n pada getaran memiliki fase yang sama (n = 0, 1, 2, 3, …) Titik-titik yang berjarak n (½) pada getaran memiliki fase yang berlawanan (n = 1, 3, 5, 7, …) Titik-titik yang sefase adalah : A ; E ; I ; … B ; F ; J ; … D ; H ; L ; … Titik-titik yang berlawanan fase adalah : A ; C A ; G C ; E B F J N A C E G I K M O D H L P
30
BEDA FASE () Beda Fase () pada satu titik untuk waktu yang berbeda adalah : = = beda fase t = beda waktu pengamatan (s)
31
Contoh Soal Salah satu ujung pegas digetarkan harmonik dengan frekuensi 5 Hz dan amplitudo getaran 0,1 m, tentukan : Persamaan simpangannya (y) Persamaan kecepatannya (v) Persamaan percepatannya (a) Sudut Fasenya saat 0,2 sekon (t=0,2) Fase pada saat 0,2 sekon (t=0,2) Beda Fase antara t = 0,2 sekon dengan t = 0,25 sekon (t=0,2 s/d t=0,25)
32
Contoh Soal Diket : f = 5 Hz A = 0,1 m Tanya :
Persamaan simpangannya (y) Persamaan kecepatannya (v) Persamaan percepatannya (a) Sudut Fasenya saat 0,2 sekon (t=0,2) Fase pada saat 0,2 sekon (t=0,2) Beda Fase antara t = 0,2 sekon dengan t = 0,25 sekon (t=0,2 s/d t=0,25)
33
Contoh Soal Diket : f = 5 Hz A = 0,1 m Jawab :
y = A sin 2ft y = 0,1 sin 25t y = 0,1 sin 10t v = (2f) A cos 2ft v = (25) 0,1 cos 25t v = cos 10t a = -(2f)2y a = -(25)2y a = -(10)2y a = -(1002) 0,1 sin 10t a = -(102) sin 10t
34
Contoh Soal Diket : f = 5 Hz A = 0,1 m
Tanya : d. Sudut Fasenya saat t=0,2 s = t + o (t=0,2) = 2ft + 0 (t=0,2) = 25 . 0,2 + 0 (t=0,2) = 2 rad atau (t=0,2) = 360o A 0, , , ,8 t (sekon) - A
35
Contoh Soal Diket : f = 5 Hz A = 0,1 m Tanya : = t/T = t . f
Beda Fase antara t = 0,2 sekon s/d t = 0,25 s (t=0,2 s/d t=0,25) = t/T = t . f (t=0,2 s/d t=0,25) = (0,25-0,2) . 5 (t=0,2 s/d t=0,25) = (0,05) 5 (t=0,2 s/d t=0,25) = (0,25) A 0,2 0, , t (sekon) - A
36
SK KD Standar Kompetensi Kompetensi Dasar
1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik Kompetensi Dasar 1.4 Menganalisis hubungan antara gaya dengan gerak getaran
37
Indikator Mendeskripsikan karakteristik gerak pada getaran
Menjelaskan hubungan antara periode getaran dengan massa beban Menyelidiki kemudian memecahkan persoalan tentang hubungan antara periode dan frekuensi getaran pegas Menganalisis gaya, simpangan, kecepatan, dan percepatan pada gerak getaran pegas
38
Febri Masda, S.Pd Menamatkan Studi pada Jurusan Pendidikan Fisika IKIP Padang pada tahun 1997 dan mulai mengajar Mata Pelajaran Fisika di SMA Negeri 11 Kota Jambi sejak tahun 1998 – (up tu recent). Pernah mengikuti pelatihan bahasa Inggris di Auckland of University, New Zealand pada tahun 2009 dan meraih penghargaan “Professional English Teaching Practice”
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.