Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Pemodelan dan Manajemen Model & Analytic Hierarchy Process (AHP)

Presentasi serupa


Presentasi berjudul: "Pemodelan dan Manajemen Model & Analytic Hierarchy Process (AHP)"— Transcript presentasi:

1 Pemodelan dan Manajemen Model & Analytic Hierarchy Process (AHP)
Sistem Pendukung Keputusan / Decision Support System Pemodelan dan Manajemen Model & Analytic Hierarchy Process (AHP) Oleh : Imam Cholissodin S.Si., M.Kom

2 Content Pemodelan dalam MSS Aspek-Aspek dalam Pemodelan
Model Berdasarkan Waktu Analisis Keputusan Forecasting (Peramalan) Bahasa Pemodelan Model Base Structure and Management Analytic Hierarchy Process (AHP) Case Study Latihan Individu + Tugas Kelompok

3 Pemodelan dalan MSS Salah satu contoh DSS, yaitu dari Frazee Paint, Inc., memiliki 3 jenis model: Model statistik (analisis regresi), digunakan untuk mencari relasi diantara variabel. Model finansial untuk pengembangan laporan pemasukan dan proyeksi data finansial untuk beberapa tahun. Model optimasi dibuat menggunakan model management science yang disebut pendekatan Linear Programming maupun pendekatan algoritmik dalam rangka melakukan optimasi pilihan.

4 Aspek-Aspek dalam Pemodelan
Beberapa aspek dalam Pemodelan : Identifikasi masalah dan analisis lingkungan. Identifikasi variabel. Perkiraan (forecasting). Model. Manajemen model.

5 Model Berdasarkan Waktu
Model statis : mengambil satu kejadian saja dalam suatu situasi, baik waktunya singkat maupun lama. Diasumsikan adanya stabilitas dalam satu interval waktu tersebut. Model dinamis : digunakan untuk mengevaluasi skenario yang berubah setiap saat. Model ini tergantung pada waktu. Dapat menunjukkan tren dan pola pada waktu tertentu.

6 Analisa Keputusan Analisa Keputusan : Analisa situasi yang melibatkan sejumlah alternatif keputusan dan umumnya tak terlalu banyak alternatif (bagian dari proses trade-off). Membuat pendekatan model dimana alternatif-alternatif tadi didaftarkan dengan perkiraan kontribusi yang berpotensi ke tujuan. Beberapa macam analisis keputusan : Satu tujuan (single goal) : Kondisi untuk satu tujuan pendekatannya menggunakan tabel keputusan Banyak tujuan (multiple goals) : Pendekatannya dengan beberapa teknik.

7 Tabel Keputusan Terdapat suatu perusahaan investasi yang sedang mempertimbangkan investasi yang akan dilakukan pada 3 alternatif ini: bonds, stocks, atau certificates of deposit (CDs). Perusahaan ini hanya mempunyai 1 tujuan, yaitu memaksimalkan investasi. Hasilnya tergantung pada status ekonomi berikut : solid growth, stagnation, dan inflation. Sebagai catatan: menginvestasikan 50 persen bonds dan 50 persen stocks adalah alternatif lain, dan hal ini dapat ditambahkan sebagai alternatif keempat Alternative Solid Growth Stagnation Inflation Bonds 12.0% 6.0% 3.0% Stocks 15.0% -2.0% CDs 6.5%

8 Tabel Keputusan Mengatasi Uncertainty : Alternative Mengatasi Resiko :
Tidak membuat keputusan dalam situasi ketidakpastian Menggunakan pendekatan optimistik dengan melihat keluaran terbaik dari setiap alternatif. Pendekatan pesimistik (konservatif) melihat keluaran terjelek yang mungkin untuk setiap alternatif. Mengatasi Resiko : Mengasumsikan bahwa peluang dari solid growth diperkirakan 50 persen, stagnation 30 persen, dan inflation 20 persen. ( (12.0%)*(0.5) ) + ( (6.0%)*(0.3) ) + ( (3.0%)*(0.2) ) = 8.4% Metode yang paling umum untuk menyelesaikan masalah analisis resiko ini adalah memilih expected value tertinggi.  Alternative Solid Growth 0.50 Stagnation 0.30 Inflation 0.20 Expected Value Bonds 12.0% 6.0% 3.0% 8.4% (Maximum) Stocks 15.0% -2.0% 8.0% CDs 6.5%

9 Multiple Goals Kasus sederhana dari masalah multiple goal ditunjukkan pada tabel berikut ini: tujuan yang ingin dicapai: yield (hasil), safety (keamanan), dan liquidity (likuiditas). Harus dipertimbangkan juga bahwa beberapa nilai dalam tabel bukanlah numerik saja, tetapi juga ada yang bernilai kualitatif (misal ; Low, High). Menggunakan pendekatan dengan beberapa teknik pemodelan. Alternative Yield Safety Liquidity Bonds 8.4% High Stocks 8.0% Low CDs 6.5% Very High

10 Optimasi Optimasi dengan Pemrograman Matematis : Karakteristik :
Membantu menyelesaikan masalah manajerial. Mengalokasikan resources yang terbatas (misal tenaga kerja, modal, mesin) diantara sekian banyak aktivitas. Mengoptimalkan tujuan yang ditetapkan. Karakteristik : Pengalokasian resources biasanya dibatasi oleh pelbagai batasan dan kebutuhan yang disebut dengan constraints. Contoh : (Linear Programming)

11 Optimasi Contoh : (Linear Programming)
Dalam membuat cat Berkualitas, dibutuhkan tingkat brilliance paling tidak 300 derajat dan level hue paling tidak 250 derajat. Note : Level brilliance dan hue ditentukan oleh 2 bahan, yaitu Alpha (x1) dan Beta (x2). Alpha dan Beta memberikan kontribusi yang sama ke tingkat brilliance, 1 ounce (berat kering) dari keduanya menghasilkan 1 derajat brilliance dalam 1 drum cat. (1x1 + 1x2 ≥ 300 ) Namun, hue diatur seluruhnya oleh jumlah Alpha; 1 ounce darinya menghasilkan 3 derajat hue dalam 1 drum cat. (3x1 + 0x2 ≥ 250) Biaya Alpha adalah $45 per ounce, dan biaya Beta adalah $12 per ounce. Diasumsikan bahwa tujuan dari kasus ini adalah meminimalkan biaya resources. (z = 45x1 + 12x2) Tentukan jumlah Alpha dan Beta yang optimal untuk membuat cat tersebut !

12 Optimasi Jawab : (Linear Programming) Decision variables :
x1 = jumlah Alpha yang diperlukan, dalam ounces, dalam setiap drum cat x2 = jumlah Beta yang diperlukan, dalam ounces, dalam setiap drum cat Temukan x1 dan x2 yang meminimimalkan : z = 45x1 + 12x2 Permasalahan diatas dapat diformulasikan dengan batasan : 1x1 + 1x2 ≥ (spesifikasi brilliance : kecerahan, brightness) 3x1 + 0x2 ≥ (spesifikasi hue) Solusi yang dihasilkan komputer : x1 = x2 = Biaya total = $

13 Capacities or Requirements
Linear Programming Perumusan Umum dan Istilah Decision Variables. Cost Coefficients. Input-Output Coefficients. Capacities / Requirements. Cost Coefficients 1X1+1X2 ≥ 300 3X1+0X2 ≥ 250 Z = 45X1+12X2 Input-Output Coefficients Capacities or Requirements Decision Variables

14 Diskusi Kelompok Buatlah contoh kasus optimasi, dan selesaikan dengan LP dengan topik bebas dan ilmiah. (Optional)

15 Simulasi Teknik untuk melakukan percobaan (misalnya “what-if”) dengan komputer digital pada suatu model dari sistem manajemen. “What-If” : berangkat dari pertanyaan: “Apa yang terjadi jika suatu variabel input, asumsi, atau nilai sebuah parameter berubah?” Contoh: Apa yang akan terjadi pada biaya inventory total jika biaya pengangkutan ke inventory meningkat 10 persen? Apa yang akan terjadi pada market share jika biaya iklan meningkat 5 persen? Simulasi melibatkan testing pada variabel input dengan nilai tertentu dan mengamati akibatnya pada variabel output. Simulasi digunakan untuk permasalahan yang kompleks/ sulit bila diselesaikan dengan optimasi numerik (misalnya LP). Kompleksitas disini berarti bahwa permasalahan tadi tak bisa dirumuskan untuk optimasinya atau perumusannya terlalu kompleks

16 Simulasi Metodologi Simulasi :
Simulasi lebih bersifat deskriptif. Hal ini mengijinkan manajer untuk menanyakan jenis pertanyaan “what-if”. Tetapi, terkadang begitu mudah diterima oleh manajer sehingga solusi analitis yang dapat menghasilkan solusi optimal malah sering dilupakan. Real-World Problem Definisi masalah Membangun model simulasi Testing dan validasi model Desain percobaan Melakukan percobaan Evaluasi hasil Implementasi

17 Pemrograman Heuristic
Pendekatan yang melibatkan cara heuristic (role of thumb) yang dapat menghasilkan solusi yang layak dan cukup baik pada berbagai permasalahan yang kompleks. Akurasi : Cukup baik (good enough) biasanya dalam jangkauan 90 sampai dengan % dari solusi optimal sebenarnya. Penerapan : Pada permasalahan kompleks yang tidak ekonomis untuk optimasi atau memakan waktu terlalu lama dan heuristic dapat meningkatkan solusi yang tak terkomputerisasi. Akan tetapi harus mempertimbangkan semua kemungkinan kombinasi permasalahan dan solusinya yang kemungkinan jarang bisa dicapai.

18 Forecasting (Peramalan)
Forecasting digunakan untuk memperkirakan nilai variabel model, dan juga hubungan logika model, pada suatu waktu tertentu di masa mendatang. Metode forecasting : Formal : Judgment method : Didasarkan pada pertimbangan subyektif dan opini dari seorang pakar. Counting method : Melibatkan berbagai eksperimen atau survey dari contoh data. Time-series analysis : Menganalisis sekumpulan nilai yang diukur pada selang waktu tertentu. Association or causal methods : Menyertakan analisis data untuk mencari asosiasi data dan, jika mungkin, menemukan hubungan sebab-akibatnya. Informal : intuisi, dugaan, dan prediksi.

19 Bahasa Pemodelan Bahasa pemrograman yang biasa dipakai untuk penyelesaian Model : C, C++ Turunannya seperti Java, PHP, C#, etc. Software untuk level yang lebih sederhana kita bisa menggunakan spreadsheet : MS Office Excel Open Office Libre, etc Software untuk level yang lebih khusus, misalnya : ProModel Arena SIMAN, etc

20 Model Base Structure and Management
Paket software untuk Model Base Management System (MBMS) dengan kemampuan yang serupa dengan konsep DBMS dalam database. Contoh Paket Software untuk MBMS: Expert Choice Decision Master Decision Aid Criterium Orion Arborist Lightyear Decision PAD Decision AIDE II

21 Diskusi Kelompok Tentukan Database dan Bahasa Pemrograman yang anda gunakan untuk : Managemen Data Managemen Model dalam membangun DSS sesuai dengan Topik Anda. Berikan alasan dengan mendeskripsikan support teknologi dan feature andalan dari kedua Tool tersebut. (Dipresentasikan)

22 Model Base Structure and Management
Kemampuan yang diinginkan dari suatu MBMS : Kontrol. Baik untuk sistem yang otomatis maupun manual. Fleksibelitas. Mudah menghadapi perubahan. Umpan balik. Selalu up-to-date, bersifat kekinian. Antarmuka. User merasa nyaman dan mudah menggunakan. Pengurangan redundansi. Model yang di-share dapat mengurangi penyimpanan data yang redundan. Peningkatan konsistensi. Mengatasi data yang berbeda atau versi model yang berbeda. Untuk mencapai kemampuan di atas, desain MBMS harus mengijinkan user untuk: Mengakses dan me-retrieve model yang ada. Berlatih dan memanipulasi model yang ada. Menyimpan model yang ada. Mengkonfigurasi model yang ada. Membangun model baru.

23 Analytic Hierarchy Process (AHP)
Prinsip Dasar AHP (Prof. Thomas L. Saaty, 1980) : Problem Decomposition (Penyusunan Hierarki Masalah) : Identifikasi tujuan keseluruhan dan sub-tujuan yang ada. Mencari kriteria untuk memperoleh sub-tujuan dari tujuan keseluruhan. Menyusun sub-kriteria dari masing-masing kriteria, dimana setiap kriteria dan sub-kriteria harus spesifik dan menunjukkan tingkat nilai dari parameter. Menentukan siapa saja pelaku yang terlibat dalam sistem dan kebijakan dari masing-masing pelaku. Menentukan alternatif sebagai output tujuan yang akan ditentukan prioritasnya. Comparative Judgement (Penilaian Perbandingan Berpasangan) : Prinsip ini dilakukan dengan membuat penilaian perbandingan berpasangan tentang kepentingan relatif dari dua elemen pada suatu tingkat hierarki tertentu dalam kaitannya dengan tingkat di atasnya. Memberikan bobot numerik berdasarkan perbandingan tersebut. Menyajikan dalam bentuk matriks yang disebut pairwise comparison.

24 Analytic Hierarchy Process (AHP)
Prinsip Dasar AHP (Prof. Thomas L. Saaty, 1980) : Synthesis of Priority (Penentuan Prioritas) : Tahap untuk mendapatkan bobot bagi setiap elemen hierarki dan elemen alternatif. Logical Consistensy (Konsistensi Logis) : Konsistensi data didapat dari rasio konsistensi (CR) yang merupakan hasil bagi antara indeks konsistensi (CI) dan indeks random (RI). Keunggulan AHP : Model DSS yang mampu menghasilkan suatu alternatif keputusan secara terstruktur. Adanya skema hierarki hingga proses kalkulasi yang didasarkan pada konsistensi data yang diberikan. Menghasilkan suatu alternatif keputusan yang komprehensif, rasional dan optimal.

25 Analytic Hierarchy Process (AHP)
Langkah dan Prosedur dalam memecahkan permasalahan menggunakan metode AHP : Mendefinisikan permasalahan dan menentukan tujuan. Menyusun masalah ke dalam suatu struktur hierarki sehingga permasalahan yang kompleks dapat ditinjau dari sisi yang detail dan terukur. Menghitung nilai prioritas untuk tiap elemen masalah pada setiap hierarki. Prioritas ini dihasilkan dari suatu matriks perbandingan berpasangan antara seluruh elemen pada tingkat hierarki yang sama. Melakukan pengujian konsistensi terhadap perbandingan antar elemen yang didapatkan pada tiap tingkat hierarki untuk digunakan dalam pertimbangan penghitungan perangkingan akhir. Skala Perbandingan Berpasangan Penetapan skala kuantitatif digunakan untuk menilai perbandingan tingkat kepentingan suatu elemen terhadap elemen lain dapat dilihat sebagai berikut :

26 Analytic Hierarchy Process (AHP)
Nilai Skala Perbandingan Berpasangan : Intensitas Kepentingan Keterangan 1 Kedua elemen sama pentingnya 3 Elemen yang satu sedikit lebih penting daripada elemen lainnya 5 Elemen yang satu lebih penting daripada elemen lainnya 7 Satu elemen jelas lebih mutlak penting daripada elemen lainnya 9 Satu elemen mutlak penting daripada elemen lainnya 2, 4, 6, 8 Nilai-nilai antara/ Nilai Tengah dua nilai pertimbangan yang berdekatan Kebalikan Nilai kebalikan, A(i,j)=1/A(j,i). Dimana A adalah matrik perbandingan berpasangan antar elemen baik kriteria, sub-kriteria maupun alternatif tujuan.

27 Analytic Hierarchy Process (AHP)
Contoh Logika Penentuan Skala Perbandingan Berpasangan : Jika terdapat 2 perbandingan berpasangan : Contoh : Jika anda mengatakan saya “sangat menyukai sekali” Mangga dari pada Durian, maka hasilnya akan ditandai (√) sebagai berikut : Sehingga hasil matrik perbandingannya adalah sebagai berikut : (Ekstrim) Sangat Begitu Suka Sekali (Ekstrim) Sangat Begitu Suka Sekali Buah Mangga Buah Durian Sangat Suka Sekali Sangat Suka Sekali Sangat Suka Sangat Suka Suka Biasa Suka 9 7 5 3 1 3 5 7 9 actual judgment value reciprocal value Mempertimbangkan nilai aktualnya Mempertimbangkan nilai kebalikannya Durian Mangga 1 1/7 7

28 Analytic Hierarchy Process (AHP)
Contoh Logika Penentuan Skala Perbandingan Berpasangan : Jika terdapat 3 perbandingan berpasangan : (Ekstrim) Sangat Begitu Suka Sekali (Ekstrim) Sangat Begitu Suka Sekali Buah Durian Buah Mangga Sangat Suka Sekali Sangat Suka Sekali Sangat Suka Sangat Suka Suka Biasa Suka 9 7 5 3 1 3 5 7 9 (Ekstrim) Sangat Begitu Suka Sekali (Ekstrim) Sangat Begitu Suka Sekali Buah Durian Buah Jeruk Sangat Suka Sekali Sangat Suka Sekali Sangat Suka Sangat Suka Suka Biasa Suka 9 7 5 3 1 3 5 7 9 (Ekstrim) Sangat Begitu Suka Sekali (Ekstrim) Sangat Begitu Suka Sekali Buah Mangga Buah Jeruk Sangat Suka Sekali Sangat Suka Sekali Sangat Suka Sangat Suka Suka Biasa Suka 9 7 5 3 1 3 5 7 9

29 Analytic Hierarchy Process (AHP)
Contoh Logika Penentuan Skala Perbandingan Berpasangan : Contoh : Jika diketahui hasil yang ditandai (√) adalah sebagai berikut : Sehingga hasil matrik perbandingannya adalah sebagai berikut : Durian Mangga Jeruk 1 1/7 5 7 2 1/5 1/2

30 Analytic Hierarchy Process (AHP)
Contoh Logika Penentuan Skala Perbandingan Berpasangan : Bagaimana jika terdapat n buah objek untuk perbandingan berpasangan : Berapakah banyak pasangan perbandingannya? n = n = 4 Maka jika terdapat n = 25 objek kriteria, maka banyaknya perbandingan berpasangannya adalah sebagai berikut : Banyak Objek (n) 1 2 3 4 5 .. n Banyaknya Perbandingan (p) 6 10 A B 1 5 A B C D 1 5 7 2 3

31 Analytic Hierarchy Process (AHP)
Detail Proses AHP : Membuat Matrik Perbandingan Berpasangan Normalisasi Perhitungan Eigen Vektor (Bobot Kriteria) Perhitungan Eigen Value (Lamda Maksimum) Menentukan Konsistensi Nilai CR (Consistency Ratio) Perhitungan nilai Bobot Sub-Kriteria (Jika ada) Perhitungan Nilai Bobot Alternatif Perangkingan Akhir Hirarki Kompleksitas Permasalahan : Sederhana : Terdapat hanya beberapa kriteria saja. Kompleks : Terdapat banyak level kriteria dan sub-kriteria. Proses Awal : Menentukan Nilai Bobot Kriteria maupun Sub-Kriteria & Mengevaluasi Nilai Konsistensi Pengambilan Keputusan

32 Analytic Hierarchy Process (AHP)
Hirarki Kompleksitas Permasalahan : Sederhana : Terdapat hanya 1 level kriteria. Kompleks : Terdapat banyak level kriteria dan sub-kriteria. Lulus/Tidak Lulus Test Bidang Prestasi Wawancara Inter-nasional Nasional Regional Akademik Keterkaitan Kelancaran Praktek Teori Sikap Mahasiswa 1 Mahasiswa 2 Mahasiswa .. Mahasiswa n

33 Contoh Case Study Pengambilan Keputusan Pemilihan Pembelian Motor : (Case Study 1) Tujuan/ Goal : Pemilihan Sepeda Motor Matic. Kriteria : Model (M), Kehandalan (K), Kapasitas Bahan Bakar (KBB) Kriteria Kualitatif : Model (M), Kehandalan (K) Kriteria Kuantitatif : Kapasitas Bahan Bakar (KBB) Alternatives : Honda Beat, Yamaha Mio, Suzuki Spin, Honda Vario. Membuat Hirarki Tree-nya : Pemilihan Motor Model Kehandalan Kapasitas Bahan Bakar Beat Mio Spin Vario

34 Contoh Case Study Membuat Hirarki Tree-nya :
Membuat Matrik perbandingan : Pemilihan Motor Level 0 Level 1 Model Kehandalan Kapasitas Bahan Bakar Level 2 Beat Mio Spin Vario Model Kehandalan Kapasitas 1 3 2 4 1/3 1/4

35 Contoh Case Study Menghitung Bobot Kriteria :
Perhatikan persamaan [Ax = maxx], dimana : A = Matrik Perbandingan dengan ukuran n x n, n merupakan banyak kriteria. X = Bobot kriteria, atau Eigen Vector dengan ukuran n x 1, juga disebut sebagai priority vector atau ranking of priorities. max = Eigen Value, atau sebagai koefisien bobot Normalisasi : Normalisasi, yaitu tiap nilai dalam kolom matrik A dibagi dengan hasil penjumlahan kolomnya (Norm_A). Menghitung rata-rata per baris dari matrik Normalisasi (X). Bobot Kriteria Jumlah per kolom :

36 Contoh Case Study Normalisasi :
Normalisasi, yaitu tiap nilai dalam kolom dibagi dengan hasil penjumlahan kolom. Menghitung rata-rata per baris dari matrik Normalisasi. Jadi Bobot Kriterianya adalah sebagai berikut : Bobot Kriteria Jumlah per kolom : Pemilihan Motor 1.00 Model 0.32 Kehandalan 0.56 Kapasitas Bahan Bakar 0.12

37 Contoh Case Study Mengecek Konsistensi (Hitung Nilai CR) :
[Ax = maxx], maka : Tabel Random Consistency Index (RI) : ( n adalah banyak kriteria ) A x Ax x Jumlah : n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 RI 0.58 0.9 1.12 1.24 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59

38 Contoh Case Study Mengecek Konsistensi (Hitung Nilai CR) :
[Ax = maxx], maka : Karena CR = < 0.1, maka dapat disimpulkan bahwa hasil evaluasi matrik A konsisten. A x Ax x Jumlah :

39 Contoh Case Study Membuat ranking alternatives base kriteria :
Untuk kriteria Model (M) : Menghitung Bobot setiap Alternatif pada Kriteria Model : Model Beat Mio Spin Vario 1 1 / 4 = 0.25 4 1 / 6 = 0.17 1 / 5 = 0.20 6 5 Priority Vector atau Bobot setiap Alternatif dari Kriteria Model Jumlah per kolom :

40 Contoh Case Study Membuat ranking alternatives base kriteria :
Untuk kriteria Kehandalan (K) : Menghitung Bobot setiap Alternatif pada Kriteria Kehandalan : Kehandalan Beat Mio Spin Vario 1 2 5 1 / 2 = 0.50 3 1 / 5 = 0.20 1 / 3 = 0.33 1 / 4 = 0.25 4 Priority Vector atau Bobot setiap Alternatif dari Kriteria Kehandalan Jumlah per kolom :

41 Contoh Case Study Membuat ranking alternatives base kriteria :
Untuk kriteria Kapasitas Bahan Bakar (KBB) : Karena ‘Kapasitas Bahan Bakar’ merupakan kriteria kuantitatif, maka dapat digunakan langsung kapasitas perbandingannya untuk menentukan rangking alternative-nya, namun ini tidak bersifat mutlak, artinya anda dapat juga membuat dalam bentuk matrik perbandingan) Priority Vector atau Bobot setiap Alternatif dari Kriteria Kapasitas Bahan Bakar Kapasitas Bahan Bakar (Liter) Beat 4.4 Mio 4.7 Spin 5.5 Vario 5.8 Normalisasi Jumlah per kolom : 20.40

42 Contoh Case Study Membuat Hirarki Tree & Bobotnya :
Perangkingan Akhir setiap alternatif untuk pengambilan keputusan: Pemilihan Motor Model 0.32 Kehandalan 0.56 Kapasitas Bahan Bakar 0.12 Kehandalan Kapasitas Bahan Bakar Model Sehingga keputusan akhir pemilihan untuk rekomendasi pembelian motor matic adalah Honda Vario. Matrik Prioritas Bobot Kriteria

43 Contoh Case Study Pengambilan Keputusan Pemilihan Pembelian Motor : (Case Study 2) Tujuan/ Goal : Pemilihan Sepeda Motor Matic. Kriteria : Model (M), Kehandalan (K), Kapasitas Bahan Bakar (KBB) Kriteria Kualitatif : Model (M), Kehandalan (K) Kriteria Kuantitatif : Kapasitas Bahan Bakar (KBB) Sub-Kriteria : Model : Model Konvensional, Model Millenium, Model Standard Alternatives : Honda Beat, Yamaha Mio, Suzuki Spin, Honda Vario. Membuat Hirarki Tree-nya : Pemilihan Motor Model Kapasitas Bahan Bakar Kehandalan Standard Konvensional Millenium Beat Mio Spin Vario

44 Contoh Case Study Membuat Hirarki Tree-nya : Level 0 Level 1 Level 2
Pemilihan Motor Level 0 Model Kehandalan Kapasitas Bahan Bakar Level 1 Konvensional Millenium Standard Level 2 Beat Mio Spin Vario Level 3

45 Contoh Case Study Level 1 (Kriteria) : Membuat Matrik perbandingan :
Menghitung Bobot Kriteria terhadap goal : Model Kehandalan Kapasitas 1 2 3 1/2 4 1/3 1/4 Bobot Kriteria Bobot Terhadap Goal Model 0.32 Kehandalan 0.56 Kapasitas 0.12

46 Contoh Case Study Level 1 (Kriteria) :
Mengecek Konsistensi (Hitung Nilai CR) Karena CR = < 0.1, maka dapat disimpulkan bahwa hasil evaluasi matrik A konsisten. A x Ax x

47 Bobot Terhadap Kriteria
Contoh Case Study Level 2 (Sub Kriteria) : Kriteria Model : Model Konvensional, Model Millenium, Model Standard Membuat Matrik perbandingan : Menghitung Bobot Sub-Kriteria terhadap Kriteria : Diketahuai Bobot Kriteria Model = 0.32, maka Model Konvensional Millenium Standard 1 1/4 1/3 4 2 3 1/2 Bobot Kriteria Bobot Terhadap Kriteria Bobot Terhadap Goal Konvensional 0.12 0.12*0.32 = 0.04 Millenium 0.56 0.56*0.32 = 0.18 Standard 0.32 0.32*0.32 = 0.10

48 Contoh Case Study Level 2 (Sub Kriteria) :
Kriteria Model : Model Konvensional, Model Millenium, Model Standard Mengecek Konsistensi (Hitung Nilai CR) n adalah banyak Sub-Kriteria Karena CR = < 0.1, maka dapat disimpulkan bahwa hasil evaluasi matrik A konsisten. A x Ax x

49 Contoh Case Study Level 2 (Sub Kriteria) :
Kriteria Kehandalan (Tidak ada Sub-Kriteria) Kriteria Kapasitas (Tidak ada Sub-Kriteria) Uji Konsistensi Hirarki (CRH_2) : Index Konsistensi Hirarki (CIH_2) Level 2 : CR_1 = 0.016 X_1 = [ ] CR_2 = [ ]t karena Kriteria Kehandalan dan Kriteria Kapasitas tidak memiliki Sub-Kriteria, maka nilai CR_2 dari keduanya = 0 Index Konsistensi Random Hirarki (RIH_2) Level 2 : RI_1 = 0.58 RI_2 = [ ]t

50 Contoh Case Study Uji Konsistensi Hirarki :
Index Konsistensi Random Hirarki (RIH_2) Level 2 : RI_1 = 0.58 X_1 = [ ] RI_2 = [ ]t karena Kriteria Kehandalan dan Kriteria Kapasitas tidak memiliki Sub-Kriteria, maka nilai RI_2 dari keduanya = 0 Rasio Konsistensi Hirarki (CRH_2) Level 2 : Karena CRH_2 = < 0.1, maka dapat disimpulkan bahwa hasil evaluasi level-level hirarki yang telah dibuat adalah konsisten.

51 Kapasitas Bahan Bakar (12%)
Contoh Case Study Berikut Hasil Pembobotan Kriteria dan Sub-Kriteria dari perhitungan sebelumnya : Note : diasumsikan bahwa ranking alternatives semua sub-kriteria sama dengan hasil ranking kriterianya. Pemilihan Motor (100%) Level 0 Model (32%) Kehandalan (56%) Kapasitas Bahan Bakar (12%) Level 1 Konvensional (4%) Millenium (18%) Standard (10%) Level 2 Beat Mio Spin Vario Level 3

52 Contoh Case Study Membuat ranking alternatives base sub-kriteria :
Untuk sub-kriteria Konvensional dari Kriteria Model (M) : Menghitung Bobot setiap Alternatif pada sub-Kriteria Konvensional : Konvensional Beat Mio Spin Vario 1 1 / 4 = 0.25 4 1 / 6 = 0.17 1 / 5 = 0.20 6 5 Priority Vector atau Bobot setiap Alternatif dari Sub-Kriteria Konvensional dari Kriteria Model Note : diasumsikan bahwa ranking alternatives semua sub-kriteria konvensional sama dengan hasil ranking alternatives kriteria Model. Jumlah per kolom :

53 Contoh Case Study Membuat ranking alternatives base sub-kriteria :
Untuk sub-kriteria Millenium dari Kriteria Model (M) : Menghitung Bobot setiap Alternatif pada sub-Kriteria Millenium : Millenium Beat Mio Spin Vario 1 1 / 4 = 0.25 4 1 / 6 = 0.17 1 / 5 = 0.20 6 5 Priority Vector atau Bobot setiap Alternatif dari Sub-Kriteria Millenium dari Kriteria Model Note : diasumsikan bahwa ranking alternatives semua sub-kriteria Millenium sama dengan hasil ranking alternatives kriteria Model. Jumlah per kolom :

54 Contoh Case Study Membuat ranking alternatives base sub-kriteria :
Untuk sub-kriteria Standard dari Kriteria Model (M) : Menghitung Bobot setiap Alternatif pada sub-Kriteria Standard : Standard Beat Mio Spin Vario 1 1 / 4 = 0.25 4 1 / 6 = 0.17 1 / 5 = 0.20 6 5 Priority Vector atau Bobot setiap Alternatif dari Sub-Kriteria Standard dari Kriteria Model Note : diasumsikan bahwa ranking alternatives semua sub-kriteria Standard sama dengan hasil ranking alternatives kriteria Model. Jumlah per kolom :

55 Contoh Case Study Membuat ranking alternatives base kriteria :
Untuk kriteria Kehandalan (K) : Menghitung Bobot setiap Alternatif pada Kriteria Kehandalan : Kehandalan Beat Mio Spin Vario 1 2 5 1 / 2 = 0.50 3 1 / 5 = 0.20 1 / 3 = 0.33 1 / 4 = 0.25 4 Priority Vector atau Bobot setiap Alternatif dari Kriteria Kehandalan Jumlah per kolom :

56 Contoh Case Study Membuat ranking alternatives base kriteria :
Untuk kriteria Kapasitas Bahan Bakar (KBB) : Karena ‘Kapasitas Bahan Bakar’ merupakan kriteria kuantitatif, maka dapat digunakan langsung kapasitas perbandingannya untuk menentukan rangking alternative-nya, namun ini tidak bersifat mutlak, artinya anda dapat juga membuat dalam bentuk matrik perbandingan) Priority Vector atau Bobot setiap Alternatif dari Kriteria Kapasitas Bahan Bakar Kapasitas Bahan Bakar (Liter) Beat 4.4 Mio 4.7 Spin 5.5 Vario 5.8 Normalisasi Jumlah per kolom : 20.40

57 Kapasitas Bahan Bakar (12%)
Contoh Case Study Membuat Hirarki Tree & Bobotnya : Perangkingan Akhir setiap alternatif untuk pengambilan keputusan: Pemilihan Motor (100%) Model (32%) Kehandalan (56%) Kapasitas Bahan Bakar (12%) Konvensional (4%) Millenium (18%) Standard (10%) Kehandalan Kapasitas Bahan Bakar Millenium Standard Konvensional Sehingga keputusan akhir pemilihan untuk rekomendasi pembelian motor matic dengan adanya penambahan sub-kriteria Model didapatkan nilai tertinggi pada Honda Vario. Matrik Prioritas Bobot Kriteria

58 Latihan Individu Berdasarkan Case Study 1, tentang sistem pengambilan keputusan pemilihan untuk rekomendasi pembelian motor Matic pada contoh, jika seorang user menambahkan lagi satu kriteria yaitu ”Harga” dengan spesifikasi berikut : Tujuan/ Goal : Pemilihan Sepeda Motor Matic. Kriteria : Model (M), Kehandalan (K), Kapasitas Bahan Bakar (KBB), Harga (H) Kriteria Kualitatif : Model (M), Kehandalan (K) Kriteria Kuantitatif : Kapasitas Bahan Bakar (KBB), Harga (H) Alternatives : Honda Beat, Yamaha Mio, Suzuki Spin, Honda Vario. Tentukan hasil keputusan akhir pemilihan untuk rekomendasi pembelian motor Matic dari kasus tersebut ! Harga Motor Matrik Perbandingan Kriteria Model Kehandalan Kapasitas Harga 1 3 2 1/3 1/2 Harga Motor Rupiah x ) Beat 138 Mio 137 Spin 128 Vario 147

59 Tugas Kelompok Bedah Paper II
Dalam semester ganjil ini, Prodi TIF ingin memilih 2 mahasiswa PTIIK UB untuk menjadi Asisten Praktikum MK Pemrograman Dasar : Tujuan/ Goal : Pemilihan Asisten praktikum Kriteria : Nilai Pemograman Dasar Mahasiswa yang bersangkutan (N), Wawancara (W), Tes koding (TK) dan Test Tulis (TT). Alternatif/ Mahasiswa : Mhs 1, Mhs 2, Mhs 3, Mhs 4, Mhs 5. Tentukan hasil akhir Pengambilan Keputusan Pemilihan Asisten Praktikum tersebut! Note : Buat matrik perbandingan bebas, namun harus tetap logis dan ilmiah sesuai dengan kreatifitas kelompok anda.

60 Final Project Minggu Ke-9 : Minggu Ke-10 Fix Judul
Contoh Template Dokumentasi Implementasi Program

61 Selesai Referensi : Al Harbi K.M.A.S. (1999), Application of AHP in Project Management, International Journal of Project Management, 19, Haas R., Meixner, O., (2009) An Illustrated Guide to the Analytic Hierarchy Process, Lecture Notes, Institute of Marketing & Innovation, University of Natural Resources, retrieved from on October 2009. Saaty, T.L., Vargas, L.G., (2001), Models, Methods, Concepts & Applications of the Analytic Hierarchy Process, Kluwer’s Academic Publishers, Boston, USA. Brans, J.P., Mareschal, B., (2010) “How to Decide with Promethee, retrieved from on October 2010.


Download ppt "Pemodelan dan Manajemen Model & Analytic Hierarchy Process (AHP)"

Presentasi serupa


Iklan oleh Google