Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehPetrus Green Telah diubah "9 tahun yang lalu
1
BAHASA RAKITAN Kenapa harus mempelajari bahasa rakitan : Mengetahui lebih banyak tentang operasi dari PC anda, yang memungkinkan pengembangan software. Kontrol secara total untuk PC dengan menggunakan assembler Program assembler lebih cepat, kecil (kapasitas) dibandingkan dengan program-program yang lain.
2
Sistem Bilangan yang digunakan dalam bahasa rakitan
Desimal Biner Heksadesimal Sistem bilangan desimal Sistem bilangan yang digunakan sehari-hari. (angka 0 – 9) Contoh : 123 1x x x100 = Sistem bilangan biner Sistem bilangan biner digunakan pada rangkaian elektronik, untuk mewakili dua kondisi. Pada komputer mewakili tegangan 0 dan 5V. (angka 0 – 1) Contoh : 1x27 + 0x26 + 0x25 + 1x24 + 1x23 + 1x22 + 0x21 + 1x20 = 157
3
Format bilangan biner Angka 101 dapat ditulis dengan : 101 atau 0101 atau Untuk sistem bilangan desimal angka biasa dipisahkan per tiga digit. Contoh : Sedangkan untuk bilangan biner ditulis dengan dipisahkan per empat digit Contoh : cenderung ditulis Sistem bilangan heksadesimal Sistem bilangan heksadesimal digunakan untuk menyederhanakan penulisan bilangan biner (angka 0 – F). Contoh : 10A 1x x x160 = 266
4
KONVERSI BILANGAN Untuk mengkonversi bilangan desimal ke sistem bilangan yang lain dapat dilakukan dengan membagi bilangan desimal dengan nilai dasar yang digunakan oleh sistem bilangan lain tersebut. Desimal ke biner (14)10 = (…)2 14 2 7 3 1 sisa : 0 sisa : 1 1110 Sehingga : (14)10 = (1110)2 Desimal ke heksadesimal (312)10 = (…)2 314 16 19 1 sisa : 10 sisa : 3 sisa : 1 13A Sehingga : (312)10 = (13A)16
5
Konversi sistem bilangan yang lain ke desimal
Untuk mengkonversi suatu sistem bilangan ke desimal digunakan rumus sbb : (ABC)N = (…)10 = (A.N2 + B.N1 + C.N0)10 Contoh : Biner Desimal (11001)2 = (…)10 = 1x24 + 1x23 + 0x22 + 0x21 + 1x20 = = (25)10 Heksadesimal Desimal (324)16 = (…)10 = 3x x x160 = = (804)10
6
Biner ke heksadesimal Desimal Biner Heksadesimal 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 10 1010 A 11 1011 B 12 1100 C 13 1101 D 14 1110 E 15 1111 F Pengubahan bilangan biner ke heksadesimal dilakukan dengan mengubah tiap 4 digit bilangan biner dari sebelah kanan menjadi bilangan heksadesimal. Contoh : ( )2 = (…)16 5 7 3 1 biner heksadesimal Sehingga ( )2 = (1375)16
7
Heksadesimal ke biner Desimal Biner Heksadesimal 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 10 1010 A 11 1011 B 12 1100 C 13 1101 D 14 1110 E 15 1111 F Pengubahan heksadesimal ke biner dilakukan dengan mengubah tiap digit dari bilangan heksadesimal menjadi bilangan biner. Contoh : (53A)16 = (…)2 A 5 3 1100 0101 0011 heksadesimal biner Sehingga : (53A)16 = ( )2
8
BILANGAN BERTANDA DAN TIDAK BERTANDA
Biner Tidak bertanda Bertanda + 5 +5 +4 +3 +2 +1 +255 -1 +254 -2 +253 -3 +252 -4 +251 -5 +250 -6
9
KOMPLEMEN 1 DAN KOMPLEMEN 2
Komplemen 1 bilangan biner Komplemen 2 bilangan biner Komplemen 2 bilangan biner diperoleh dari komplemen 1 ditambah dengan 1. Sebenarnya Komplemen 1 Contoh : Hitung komplemen 2 dari (10101)2 ! Contoh : Pertama, hitung komplemen 1 dari (10101)2 Hasil komplemen 1 : (01010)2 Kedua, hasil komplemen 1 ditambah dengan 1 Hasil komplemen 2 : (01010)2 + (1)2 : (1011)2 Hitung komplemen 1 dari : (11001)2 (110)2 ( )2 (111001)2 ( )2 (10011)2 Hitung komplemen 2 dari : (11001)2 (111)2 ( )2 (111010)2 ( )2 (10100)2
10
Komplemen 1 heksadesimal
Untuk mendapatkan komplemen 1 dari bilangan heksadesimal, langkah-langkahnya adalah sebagai berikut : Ubah heksadesimal biner Tentukan komplemen 1 dari biner tsb Ubah komplemen 1 dalam bentuk biner heksadesimal Contoh : Hitung komplemen 1 dari (58B)16 ! Komplemen 2 heksadesimal Komplemen 2 heksadesimal diperoleh dari penjumlahan komplemen 1 heksadesimal dengan 1. 1. Heksa biner (58B)16 = ( )2 2. Tentukan komplemen 1 ( )2 ( )2 3. Ubah komplemen 1 biner heksa ( )2 = (A74)16 Contoh : Hitung komplemen 2 dari (58B)16 ! Komplemen 1 dari (58B)16 = (A74)16 Komplemen 2 dari (58B)16 = (A74)16 + (1)16 = (A75)16
11
Angka Komplemen 1 F 1 E 2 D 3 C 4 B 5 A 6 9 7 8 MENGHITUNG KOMPLEMEN DARI TABEL Selain menggunakan cara sebelumnya, komplemen 1 bilangan heksadesimal dapat juga diperoleh dari tabel berikut. Untuk komplemen 2 tetap diperoleh dengan menambahkan komplemen 1 dengan angka 1 Contoh : Hitung komplemen 1 dan 2 dari (7BA)16 ! Komplemen 1-nya = (845)16 Komplemen 2-nya = (846)16
12
OPERASI PERHITUNGAN Operasi perhitungan yang dilakukan : Penjumlahan
Pengurangan Perkalian Pembagian Penjumlahan Bilangan Biner Dasar penjumlahan biner adalah : 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 10 (hasil penjumlahan 0 dengan carry 1) Contoh : 11 110 + (a) 3 6 100 10 110 + (b) 4 2 6 1111 110 10101 + (c) 15 6 21
13
Pengurangan Bilangan Biner
Dasar pengurangan biner adalah : 0 – 0 = 0 1 – 0 = 1 1 – 1 = 0 10 – 1 = 1 Contoh : 11 10 01 - (a) 3 2 1 100 10 - (b) 4 2 1111 110 1001 - (c) 15 6 9 Perkalian Bilangan Biner Dasar perkalian biner adalah : 0 x 0 = 0 0 x 1 = 0 1 x 0 = 0 1 x 1 = 1 Contoh : 11 1 x (a) 3 (b) 100 10 000 x 4 2 8 1000
14
Pembagian Bilangan Biner
Pembagian untuk bilangan biner mengikuti prosedur yang sama dengan sistem bilangan desimal Contoh : (a) 110 11 000 10 6 3 2 (b) 1100 100 11 000 4 12 3
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.