Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

TEORI PRODUKSI Fungsi produksi : model matematis yg menunjukkan hubungan antra jumlah input yg digunakan dg jumlah output yang dihasilkan Fungsi produksi.

Presentasi serupa


Presentasi berjudul: "TEORI PRODUKSI Fungsi produksi : model matematis yg menunjukkan hubungan antra jumlah input yg digunakan dg jumlah output yang dihasilkan Fungsi produksi."— Transcript presentasi:

1 TEORI PRODUKSI Fungsi produksi : model matematis yg menunjukkan hubungan antra jumlah input yg digunakan dg jumlah output yang dihasilkan Fungsi produksi  hubungan ’fisik’ secara tepat antara ’factors input’ dengan ’output’ Q = ƒ (K, L, X,…….) …… (i)

2 Dimana: Q = Ouput/keluaran/produksi (dalam satuan fisik) K = Kapital/modal (dalam satuan fisik) L = Labor/tenaga kerja (dalam satuan fisik) X = Input lainnya (dalam satuan fisik) ƒ = Hubungan fungsi (ditentukan oleh/dipengaruhi oleh) Input digolongkan jadi 2: 1. Input tetap/faktor produksi tetap (fixed factors production) : faktor produksi yang jumlah penggunaannya tidak tergantung jumlah produksi 2. Input tidak tetap/faktor produksi variabel (variable factors production) : faktor produksi yang jumlah penggunaannya tergantung jumlah produksi

3 Hasil Padi pada Berbagai Tingkat Pemakaian Pupuk Nitrogen
Tabel 1 Hasil Padi pada Berbagai Tingkat Pemakaian Pupuk Nitrogen Plot Percobaan Unit Pemakaian Pupuk Nitrogen Unit Hasil Padi 1 = (0,24 Ha) 0,00 5,00 2 = (0,24 Ha) 1,00 45,00 3 = (0,24 Ha) 2,00 84,00 4 = (0,24 Ha) 3,00 110,00 5 = (0,24 Ha) 4,00 127,00 6 = (0,24 Ha) 137,00 7 = (0,24 Ha) 6,00 140,00 8 = (0,24 Ha) 7,00 9 = (0,24 Ha) 8,00 129,00

4 Penggunaan Pupuk Nitrogen Terhadap Produksi Padi
Gambar 1 Kurva Fungsi Produksi Penggunaan Pupuk Nitrogen Terhadap Produksi Padi

5 Hukum ini berlaku dlm situasi proses produksi jika:
Berlaku The Law of diminishing Return  Berkurangnya tambahan output yg dihasilkan dlm suatu proses produksi dari penambahan satu input variabel Hukum ini berlaku dlm situasi proses produksi jika: Hanya ada satu input variabel, sedangkan input lain tetap Teknologi yg digunakan dlm proses produksi tdk berubah Sifat koefisen produksi adalah berubah-ubah

6 Hubungan antara produk total, produk rata-rata dan produk marginal
Produk total /Total Product (TP) produk total yg dihasilkan Produksi rata-rata /Average Product (AP) banyaknya output yg dihasilkan oleh setiap penggunaan I unit input variabel. Formulasi : APL = Q/L Produksi marginal /Marginal Product(MP)  tambahan jumlah output yg dihasilkan sbg akibat dari tambahan input variabel sebanyak satu unit. Formulasi : MPL= ∆Q/ ∆L

7

8 Daerah-Daerah dalam Fungsi Produksi
MPP Ooutput MPP-Max Fase-II Fase-I APP APP-Max TPP MPP = 0 Input variabel Output Fase-III C B A a Gambar 6 Daerah-Daerah dalam Fungsi Produksi 0>e>1 e > 1 e < 0

9 Increasing Return to Scale
di dalam fungsi produksi tersebut ada 3 kemungkinan yang dapat terjadi pada output yang dihasilkan, yaitu; 1.Output yang dihasilkan meningkat dengan tingkat kenaikan yang semakin meningkat setiap penggunaan unit input (increasing return to scale) Output Input Gambar 3 Increasing Return to Scale

10 2. Output yang dihasilkan meningkat dengan tingkat kenaikan yang tetap/konstan untuk setiap penggunaan unit input (constant return to scale) Output Input

11 Decreasing Return to Scale
3. Output yang dihasilkan meningkat dengan tingkat kenaikan yang semakin menurun untuk setiap penggunaan unit input (’decreasing return to scale) Gambar 5 Decreasing Return to Scale Output Input

12 Elastisitas Produksi Dimana:
(ΔQ/Q) η = ………………….(ii) (ΔI/I) atau, (∂Q/Q) η = ……………….(iii) (∂I/I) Dimana: η = Elastisitas produksi dari penggunaan input tertentu. ΔI = ∂I = Jumlah tambahan input tertentu (dalam satuan fisik). I = Jumlah total penggunaan input atau jumlah total input yang diaplikasikan (dalam satuan fisik). ΔQ = ∂Q = Jumlah tambahan ouput akibat adanya tambahan input tertentu (dalam satuan fisik). Q = Jumlah total output yang diakibatkan oleh jumlah total penggunaan input atau jumlah total input yang diaplikasikan (dalam satuan fisik).

13 (ΔQ/ΔI) = (∂Q/Q) = MPP (marginal physical product) ..... (x) dan,
(ΔQ/Q) (∂Q/Q) η = = ….. (= ii; iii) (ΔI/I) (∂I/I) ΔQ I = x (viii) ΔI Q atau, ∂Q I η = x ……………….. (ix) ∂I Q (ΔQ/ΔI) = (∂Q/Q) = MPP (marginal physical product) (x) dan, (Q/I) = APP (average physical produk) (xi)

14 η = x ................. (= viii) ΔI Q atau, ∂Q I η = x …………….. (= ix)
maka, η = MPP x (xii) APP MPP = (xiii)

15 Pada kondisi dimana nilai η = 1 ini, disebut sebagai kondisi ‘efisiensi teknis’. Oleh kerena itu, ‘efisiensi teknis’ tersebut tercapai pada saat; Efisiensi teknis  menggambarkan tingkat produksi optimum yang akan dicapai dari penggunaan faktor produksi. MPP = 1, atau MPP = APP ……………….(xiv) APP

16 Ada 4 kondisi nilai elastisitas:
Nilai elastisitas produksi (η) > 1 apabila ditingkatkan penggunaan input produksi fisik sebesar 1% (satu persen), maka akan dapat memberikan tambahan output/produksi fisik sebesar ‘lebih besar’ dari 1% (satu persen) Nilai elastisitas produksi (η) < 1 Nilai elastisitas produksi (η) = 0 Nilai elastisitas produksi (η) = negatif

17 kesimpulan menyangkut tingkat elastisitas produksi (η) dari penggunaan suatu input produksi tertentu
Bila η > 1, maka; Fungsi produksi dalam kondisi ‘increasing return to scale’, atau berada pada ‘fase-I’, atau berada dalam daerah ‘irrasional-I’. Secara teknis ‘belum’ mencapai kondisi ‘efisiensi teknis’, sehingga produsen masih ‘diajurkan’ untuk menambah sejumlah input produksi tertentu tersebut, karena tambahan 1% (satu persen) jumlah fisik input produksi tersebut, akan menyebabkan bertambahnya jumlah fisik produksi/output ‘lebih besar’ dari 1% (satu persen).

18 Bila η = 1 atau η > 1, maka;
Sudah tercapai ‘efisiensi teknis’, dan secara ‘teknis’ produk optimum tercapai. Secara teknis, produsen yang ‘rasional’ akan terangsang untuk ‘tidak’ menambahkan lagi sejumlah input produksi tersebut.

19 Bila η < 1 atau η > 0, maka;
Fungsi produksi dalam kondisi ‘decreasing return to scale’, atau berada pada ‘fase-II’, atau berada dalam daerah ‘rasional-II’. Menambahkan sejumlah input produksi tertentu tersebut di dalam proses produksi, secara ‘teknis’ tercatat ‘tidak efisien’, karena tambahan 1% (satu persen) jumlah fisik input produksi tersebut, hanya akan menyebabkan bertambahnya jumlah fisik produksi/ output ‘lebih kecil’ dari 1% (satu persen) Secara teknis ‘tidak’ dianjurkan untuk menambahkan input produksi pada kondisi yang demikian. Akan tetapi ‘secara ekonomi’ (cat.: sudah memperhitungkan harga input dan output) masih dianjurkan, karena keuntungan maksimum (maximum profit) akan tercapai pada suatu titik tertentu pada ‘fase-II’ fungsi produksi ini

20 Bila η = negatif, maka; Terjadi suatu kondisi dimana produk fisik total (TPP) akan semakin menurun apabila ditambahkan sejumlah input produksi (adanya eksternalitas negatif dari pemakaian tambahan sejumlah input produksi tersebut). Kondisi ini mencerminkan sudah berada pada ‘fase-III’ /Daerah irrasional dalam fungsi produksi, sehingga menambahkan sejumlah input produksi justru ‘tidak rasional’

21 Pengaruh Teknologi Terhadap Kurva Fungsi Produksi


Download ppt "TEORI PRODUKSI Fungsi produksi : model matematis yg menunjukkan hubungan antra jumlah input yg digunakan dg jumlah output yang dihasilkan Fungsi produksi."

Presentasi serupa


Iklan oleh Google