Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Free Powerpoint TemplatesPage 1Free Powerpoint Templates KOMBINATORIKA 2 by Astri Fitria Nur’ani.

Presentasi serupa


Presentasi berjudul: "Free Powerpoint TemplatesPage 1Free Powerpoint Templates KOMBINATORIKA 2 by Astri Fitria Nur’ani."— Transcript presentasi:

1 Free Powerpoint TemplatesPage 1Free Powerpoint Templates KOMBINATORIKA 2 by Astri Fitria Nur’ani

2 Free Powerpoint TemplatesPage 2 PERMUTASI A. Pengertian Jumlah urutan berbeda dari pengaturan objek-objek. B. Permutasi Tanpa pengulangan Permutasi r dari n objek yang semuanya berbeda adalah banyaknya kemungkinan urutan r buah objek yang dipilih dari n buah objek (r ≤ n) Jika n = r maka Jika n = r maka

3 Free Powerpoint TemplatesPage 3 PERMUTASI C. Permutasi dengan Pengulangan Jika n objek terdiri dari k kategori (objek dalam kategori yang sama tidak dapat dibedakan), kategori 1 ada sebanyak n 1 objek, kategori 2 ada sebanyak n 2 objek dst, kategori k ada sebanyak n k objek dengan n 1 + n 2 +…+n k = n. Maka banyaknya cara untuk mengatur ke-n objek tersebut adalah : D. Permutasi Melingkar Permutasi melingkar dari n objek yang berbeda : P (n – 1, n – 1) = (n – 1)!

4 Free Powerpoint TemplatesPage 4 PERMUTASI Mari Berlatih ^.^ 1.Fadli memiliki usaha penyewaan buku pelajaran matematika untuk PT. Buku yang dimiliki Fadli ada 25 buku yang terdiri dari 8 eksemplar buku kalkulus, 6 eksemplar buku Statistika, 4 eksemplar buku Aljabar linear dan sisanya buku Geometri. Ke-25 buku tersebut akan disusun dalam satu baris rak, ada berapa cara untuk menyusun ke-25 buku tersebut apabila buku yang sejenis tidak dapat dibedakan dan : a.Tanpa batasan apa-apa b.Buku kalkulus harus disusun secara berdekatan c.Buku-buku yang sejenis harus berdekatan

5 Free Powerpoint TemplatesPage 5 Penyelesaian : a.Banyaknya cara menyusun ke-25 buku jika tanpa batasan apa- apa : b.Buku kalkulus harus disusun secara berdekatan. tahap 1. Menyusun buku2 kalkulus Karena buku-buku kalkulus harus disusun berdekatan maka ke 8 buku tersebut dianggap sebagai satu kesatuan buku yang di dalamnya hanya ada satu kemungkinan susunan. Banyaknya cara pada tahap 1 (nA) = 1! =1 cara tahap 2. Menggabungkan satu-kesatuan buku kalkulus ini dengan buku2 lainnya untuk disusun banyaknya cara pada tahap 2 (nB) adalah : sehingga secara keseluruhan banyaknya cara menyusun ke-25 buku tersebut apabila buku-buku kalkulus disusun berdekatan = nA  nB

6 Free Powerpoint TemplatesPage 6 c.Buku yang sejenis harus berdekatan : Cara menyusun buku kalkulus = 1! = 1 cara Cara menyusun buku statistika = 1! = 1 cara Cara menyusun buku aljabar linear = 1! = 1 cara Cara menyusun buku geometri = 1! = 1 cara sehingga secara keseluruhan banyaknya cara menyusun ke-25 buku tersebut apabila buku-buku sejenis disusun berdekatan yaitu : Jadi, (n1) x (n2) x (n3) x (n4) x (nB) = 1x1x1x1x18! = 18!

7 Free Powerpoint TemplatesPage pengurus HIMAKOM yang terdiri yang terdiri dari, 3 mahasiswa tingkat 3, 5 mahasiswa tingkat 2 dan 7 mahasiswa tingkat 1 akan rapat dan menempati posisi tempat duduk secara melingkar. Ada berapa cara untuk mengatur tempat duduk ke-15 mahasiswa tersebut apabila : a.Tidak ada batasan apa-apa b.Mahasiswa tingkat 1 harus duduk berdekatan c.Mahasiswa dari tingkat yang sama harus duduk berdekatan.

8 Free Powerpoint TemplatesPage 8 Penyelesaian : a.Tanpa batasan apa-apa : P (n – 1,n – 1) = (n – 1)! = (15 – 1)! = 14! b.Mahasiswa tingkat 1 harus berdekatan : (nA) = 1! = 1 cara Jadi banyaknya cara yaitu : P (n – 1,n – 1) = (n – 1)! = (9 – 1)! = 8! c.Mahasiswa dari tingkat yang sama harus duduk berdekatan : P (n – 1,n – 1) = (n – 1)! = (3 – 1)! = 2!

9 Free Powerpoint TemplatesPage 9

10 Free Powerpoint TemplatesPage 10


Download ppt "Free Powerpoint TemplatesPage 1Free Powerpoint Templates KOMBINATORIKA 2 by Astri Fitria Nur’ani."

Presentasi serupa


Iklan oleh Google