Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

P ERTEMUAN X “INFERENSI DENGAN KETIDAK PASTIAN”. I NFERENSI D ENGAN K ETIDAKPASTIAN Ketidakpastian dalam AI digambarkan dalam 3(tiga) tahap (Kanal and.

Presentasi serupa


Presentasi berjudul: "P ERTEMUAN X “INFERENSI DENGAN KETIDAK PASTIAN”. I NFERENSI D ENGAN K ETIDAKPASTIAN Ketidakpastian dalam AI digambarkan dalam 3(tiga) tahap (Kanal and."— Transcript presentasi:

1 P ERTEMUAN X “INFERENSI DENGAN KETIDAK PASTIAN”

2 I NFERENSI D ENGAN K ETIDAKPASTIAN Ketidakpastian dalam AI digambarkan dalam 3(tiga) tahap (Kanal and Lemmer, 1986 ; Parsaye and Chignell, 1988) Step 1 Rute Alternatif Step 2 Step 3 Representasi Ketidakpastian dari Basic set of events Mengkombinasikan Bodies dari Informasi yang Tidak Pasti Pengambilan Inferensi

3 P ENJELASAN Step 1 :Pakar memperoleh pengetahuan yang tidak pasti : numerik, grafik, atau simbolik (“hampir pasti bahwa …….”) Step 2 :Pengetahuan yang tidak pasti dapat digunakan untuk menarik kesimpulan dalam kasus sederhana (step 3) Step 3 : Maksud dari sistem berbasis pengetahuan adalah untuk penarikan kesimpulan.

4 R EPRESENTING U NCERTAINTY : Uncertainty When a user cannot provide a definite answer Imprecise knowledge Incomplete information 4

5 R EPRESENTASI K ETIDAK PASTIAN Numeric Graphic / Symbolic

6 R EPRESENTASI KETIDAKPASTIAN N UMERIK Skala (0 – 1 atau ) 0 = Complete uncertainty (sangat tidakpasti) 1 or 100 = Complete certainty (sangat pasti) Masalahnya, pakar memberikan angka tertentu sesuai dengan kognisi dan pengalamannya Orang cenderung tidak konsisten dalam menilai sesuatu untuk waktu yang berbeda (meskipun masalahnya sama)

7 G RAPHIC Horizontal bars Tidak seakurat metode numerik. Beberapa pakar tidak mempunyai pengalaman dalam membuat tanda pada skala grafik. Beberapa pakar tidak biasa memberikan angka dalam skala, mereka lebih suka memberi ranking Expert A Expert B No confidence Little Some Much Complete confidence

8 P ROBABILITAS DAN P ENDEKATAN LAINNYA Ratio Probabilitas Teorema Bayes

9 R ATIO P ROBABILITAS Probabilitas menunjukkan kemungkinan sesuatu akan terjadi atau tidak. Misal : Dari 10 orang sarjana, 3 orang menguasai cisco, sehingga peluang untuk memilih sarjana yang menguasai cisco adalah : p(cisco) = 3/10 = 0.3

10 TEOREMA BAYES

11 T EOREMA B AYES (P ROBABILITAS B ERSYARAT ) Contoh : Si Ani mengalami gejala ada bintik-bintik di wajahnya. Dokter menduga bahwa Si Ani terkena cacar dengan : Probabilitas munculnya bintik-bintik di wajah, jika Si Ani terkena cacar; p(Bintik2| Cacar) = 0.8 Probabilitas Si Ani terkena cacar tanpa memandang gejala apapun; p(Cacar) = 0.4 Probabilitas munculnya bintik-bintik di wajah, jika Si Ani alergi; p(Bintik2| Alergi) = 0.3 Probabilitas Si Ani terkena alergi tanpa memandang gejala apapun; p(Alergi) = 0.7 Probabilitas munculnya bintik-bintik di wajah, jika Si Ani jerawatan; p(Bintik2| Jerawatan) = 0.9 Probabilitas Si Ani jerawatan tanpa memandang gejala apapun; p(Jerawatan) = 0.5

12 Maka : probabilitas Ani terkena cacar karena ada bintik- bintik di wajahnya :

13 Probabilitas Ani terkena alergi karena ada bintik-bintik di wajahnya :

14 probabilitas Ani jerawatan karena ada bintikbintik di wajahnya :

15 Jika setelah dilakukan pengujian terhadap hipotesis muncul satu atau lebih evidence (fakta) atau observasi baru maka :

16 Dengan :

17 M ISAL : Adanya bintik-bintik di wajah merupakan gejala seseorang terkena cacar. Observasi baru menunjukkan bahwa selain bintik-bintik di wajah, panas badan juga merupakan gejala orang kena cacar. Jadi antara munculnya bintik-bintik di wajah dan panas badan juga memiliki keterkaitan satu sama lain.

18

19 Ani ada bintik-bintik di wajahnya. Dokter menduga bahwa Asih terkena cacar dengan probabilitas terkena cacar bila ada bintik-bintik di wajah p(cacar | bintik) = 0.8 Ada observasi bahwa orang terkena cacar pasti mengalami panas badan. Jika diketahui probabilitas orang terkena cacar bila panas badan p(cacar|panas ) = 0.5 Keterkaitan antara adanya bintik-bintik di wajah dan panas badan bila seseorang terkena cacar p(bintik | panas, cacar) = 0.4 Keterkaitan antara adanya bintik-bintik di wajah dan panas badan p(bintik | panas) = 0.6

20 M AKA :

21 Pengembangan lebih jauh dari Teorema Bayes adalah Jaringan Bayes. Contoh : hubungan antara krismon, PHK, pengangguran, gelandangan dalam suatu jaringan.

22 Muculnya pengangguran disebabkan PHK

23 Muculnya pengangguran dapat digunakan sebagai evidence untuk membuktikan adanya gelandangan.

24 Probabilitias terjadinya PHK jika terjadi krismon, probabilitas munculnya gelandangan jika terjadi krismon

25 P ROBABILITIAS UNTUK JARINGAN BAYES

26 LATIHAN !!! Tiga anggota dari sebuah organisasi dicalonkan sebagai ketua. Telah diketahui peluang bpk Ali (A) terpilih 0,3 ; peluang bpk Basuki (B) terpilih 0,5 dan peluang bpk Catur (C) terpilih 0,2. Juga telah diketahui peluang kenaikan iuran anggota jika A terpilih 0,8 ; jika B terpilih 0,1 dan jika C terpilih 0,4. a), Berapa peluang iuran anggota akan naik ? b). Berapa peluang bpk C terpilih sbg ketua?

27 27 Diketahui dari soal: ; ; a). Peluang iuran anggota akan naik adalah b). Peluang bapak C terpilih se bagai ketua adalah

28 PERTEMUAN 11 ADA QUIS


Download ppt "P ERTEMUAN X “INFERENSI DENGAN KETIDAK PASTIAN”. I NFERENSI D ENGAN K ETIDAKPASTIAN Ketidakpastian dalam AI digambarkan dalam 3(tiga) tahap (Kanal and."

Presentasi serupa


Iklan oleh Google