Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

GENETIKA DASAR. POKOK BAHASAN 3 1. Pautan Gen 2. Pindah Silang 3. Pemetaan Kromosom.

Presentasi serupa


Presentasi berjudul: "GENETIKA DASAR. POKOK BAHASAN 3 1. Pautan Gen 2. Pindah Silang 3. Pemetaan Kromosom."— Transcript presentasi:

1 GENETIKA DASAR

2 POKOK BAHASAN 3 1. Pautan Gen 2. Pindah Silang 3. Pemetaan Kromosom

3 HUKUM MENDEL I : “The Law of Segregation of Allelic Genes” atau Hukum Pemisahan Bebas HUKUM MENDEL II : “The law of Independent Assortment of Genes” atau Hukum Pengelompokkan Gen secara Bebas

4

5

6 Pautan Gen (Linkage gene) Deviation From Independent Assortment Ratios Pautan/Berangkai/Linkage gene :  Peristiwa beberapa gen bukan alel terdapat pada satu kromosom yang sama

7 Pautan/Berangkai/Linkage gene : - RANGKAI/PAUTAN SEMPURNA  Gen-gen yang terangkai letaknya amat berdekatan, maka selama meiosis gen-gen itu tidak mengalami perubahan letak. Sehingga gen-gen itu bersama-sama menuju ke gamet - RANGKAI/PAUTAN TIDAK SEMPURNA  Gen-gen yang terangkai pada satu kromosom letaknya tidak berdekatan satu sama lainnya, sehingga gen-gen itu dapat mengalami perubahan letak yang disebabkan karena ada penukaran segmen dari kromatid-kromatid pada sepasang kromosom homolog

8 Bateson and Punnett crossed a purple, long snapdragon with one that was red and round The F1 snapdragon was selfed Observed deviation from a 9:3:3:1 ratio

9

10 Because the parental genes seemed to assort together more then they were expected, Bateson and Punnett said they were coupled Phenotype (genotype) Number of individuals Observed Approximate number of individuals Expected (from 9:3:3:1) Purple, long (P_L_) Purple, round (P_ll)2171 Red, long (ppL_)2171 Red, round (ppll)5524

11 Creating a Linkage Hypothesis Morgan used Drosophila as an experimental organism to prove linkage

12 Morgan crossed Drosophila red eye, normal wing (pr+pr+ vg+vg+) and purple eye vestigal wing (prpr vgvg) The F1 flies were test crossed Observed deviation from the 1:1:1:1 ratio

13 Coupling Cross Chi-Square Test F1 GameteObservedExpected(O-E)2/E pr+ vg pr+ vg pr vg pr vg Total2839 X 2 =1764.8

14

15 Proof That Linked Genes Exist Morgan hypothesized that alleles of two genes close together may not assort indepentently into gametes Parental arrangements may appear together in gametes

16 Morgan performed a second cross to prove the hypothesis He crossed red eye, vestigal wing (pr+pr+ vgvg) and purple eye, normal wing flies (prpr vg+vg+) The F1 flies were testcrossed

17 Parent : pr+pr+ vgvg x prpr vg+vg+ (red eye, vestigal wing) (purple eye, normal wing) F1 : pr+pr vgvg+ x testcross

18 F 1 GameteTestcross DistributionGamete Type pr + vg + 157Recombinant pr + vg965Parental pr vg Parental pr vg146Recombinant

19 Repulsion Cross Chi-Square Test F 1 GameteObservedExpected(O-E) 2 /E pr + vg pr + vg pr vg pr vg Total2335 X 2 =1372.6

20 Terms Used in Linkage Analysis Coupling – the F1 configuration where both dominant alleles reside on the same chromosome; also called CIS  gen-gen dominan terangkai pada satu kromosom, sedangkan alel-alel resesifnya terangkai pada kromosom homolognya Penulisannya : AB/ab atau AB ab Repulsion - the F1 configuration where one dominant and one recessive allele reside on the same chromosome; also called TRANS  Gen dominan terangkai dengan alel resesifnya pada satu kromosom, sedangkan alel-alel resesifnya terangkai pada kromosom homolognya Penulisannya : Ab/aB atau Ab aB

21 Coupling – the F1 configuration where both dominant alleles reside on the same chromosome; also called CIS The Development Of The Coupling Chromosome

22 Repulsion - the F1 configuration where one dominant and one recessive allele reside on the same chromosome; also called TRANS The Development Of The Repulsion Chromosome

23 Recombination Occurs Less Frequently Between Closely Linked Genes Physical crossing over is a normal meiosis event Crossing-over  pertukaran segmen dari kromatid-kromatid bukan non-sister kromatid dari sepasang kromosom homolog The term used to describe crossing over is recombination Recombination can occur between any two genes on a chromosome The farther apart the two genes the more crossing over

24

25 Cross over

26

27

28

29 A B A B meiosis I a b A B A B gamet parental A b gamet rekombinasi a B gamet rekombinasi a b a b gamet parental

30

31

32

33

34

35 Faktor-faktor yang mempengaruhi pindah silang 1. TEMPERATUR, temperatur kurang atau melebiji temperatur biasa dapat memperbesar kemungkinan pindah silang 2. UMUR, makin tua suatu individu makin kurang mengalami pindah silang 3. ZAT KIMIA tertentu dapat memperbesar kemungkinan terjadinya pindah silang 4. PENYINARAN SINAR X dapat memperbesar kemungkinan pindah silang 5. JARAK ANTAR GEN YANG TERANGKAI, makin jauh letak satu gen dengan gen lainnya, makin besar kemungkinan pindah silang 6. JENIS KELAMIN, umumnya jantan atau betina dapat mengalami pindah silang. Namun pada ulat sutera betina dan Drosophila jantan tidak pernah terjadi pindah silang

36 Determining Linkage Distances By definition, one map unit is equal to one percent recombinant gametes or phenotypes In honor of Morgan, one map unit is also called one centimorgan (cM) 1 mu = 1% = 1 cM

37 To determine the distance between two genes, divide the number of recombinant gametes by the total number of gametes Formula : Number of recombinants x 100% Total Number

38 Coupling Data F 1 GameteTestcross DistributionGamete Type pr + vg Parental pr + vg 151Recombinant pr vg + 154Recombinant pr vg 1195Parental pr vg distance = (( )/2839)*100% = 10.7 m.u = 10.7 cM

39 Repulsion Data F 1 GameteTestcross DistributionGamete Type pr + vg + 157Recombinant pr + vg 965Parental pr vg Parental pr vg 146Recombinant pr vg distance = (( )/2335)*100% = 13.0 cM

40 Jarak Gen Coupling: pr vg 10,7 cM Repulsion: pr vg 13,0 cM

41 Remember these are estimates; the differences between the two estimates reflect random deviation Neither estimate is incorrect; repeated experimentation would give a more accurate estimate

42 Deriving Linkage Distance And Gene Order From Three-Point Crosses Analyzing three genes allows us to determine gene order as well as linkage distance Need to create a F1 and follow deviation from a 1:1:1:1:1:1:1:1 ratio What are the expected gametes when three linked genes are considered?

43

44 Analyzing Three-Point Test Cross Data GenotypeObserved ABC 390 abc 374 AbC 27 aBC 30 ABc 5 abC 8 Abc 81 aBC 85 Total1000

45 What are the parental genotypes? What is the gene order? What are the linkage distances?

46 What are the parental genotypes? The genotypes most frequently found are the parental genotypes ABC and abc are the parental genotypes

47 What is the gene order? * Menentukan susunan gen dengan memperhatikan Tipe Parental dan Tipe DCO Pada Tipe Parental di-DCO-kan dan dibandingkan dengan hasil DCO pengamatan The double crossover moves a non-parental allele of the central gene between two parental alleles Gene C is between genes A and B (gene order = A C B)

48 Analyzing Three-Point Test Cross Data GenotypeObservedType of Gamete ACB 390Parental acb 374Parental ACb 27Single-crossover between genes C and B aCB 30Single-crossover between genes C and B AcB 5Double-crossover aCb 8Double-crossover Acb 81Single-crossover between genes A and C aCB 85Single-crossover between genes A and C Total1000

49 What are the linkage distances? Linkage distance equals the sum of the appropriate single cross plus all double crosses divided by total number of gametes Formula : Jarak = SCO + DCO x 100% Jumlah Total

50 * Jarak A - C = (( )/1000)*100 = 17.9 cM *Jarak C - B = (( )/1000)*100 = 7.0 cM A CB 17,9 cM 7,0 cM

51 Contoh lain : GenotypeObserved v cv + ct v + cv ct 592 v cv ct + 45 v + cv + ct 40 v cv ct 89 v + cv + ct + 94 v cv + ct 3 v + cv ct + 5 Total1448

52 Determine the parental genotypes The most abundant genotypes are v cv+ ct+ and v+ cv ct.

53 Determine the gene order Allele ct is paired with v and cv+. This is a different pairing than the parental genotype. Therefore gene ct is in the middle.

54

55 GenotypeObserved Type of Gamete v ct + cv Parental v + ct cv 592 Parental v ct + cv 45 Single-crossover between genes ct and cv v + ct cv + 40 Single-crossover between genes ct and cv v ct cv 89 Single-crossover between genes v and ct v + ct + cv + 94 Single-crossover between genes v and ct v ct cv + 3 Double-crossover v + ct + cv 5 Double-crossover Total1448

56 Determine the linkage distance v-ct = 100*(( )/1448) = 13.2 cM ct-cv = 100*(( )/1448 = 6.4 cM

57 Determine the linkage distance v-ct = 100*(( )/1448) = 13.2 cM ct-cv = 100*(( )/1448 = 6.4 cM

58 MENGHITUNG JARAK PETA DAN FREKUENSI REKOMBINASI Menghitung jarak antar gen dengan menggunakan percobaan Bateson dan Punnett  menggunakan frekuensi rekombinasi dari metode uji silang (testcross)

59 Parental PL/PLxpl/pl (Purple, long) (red, round) F1 PL/pl x ppll (purple, long) (red,round) Progeny :

60 Tipe parental :Purple, long (P_L_) 284 Red, round (ppll) 55 Tipe rekombinan : Purple, round (P_ll)21 Red, long (ppL_) 21 Frekuensi rekombinan : rekombinan x 100% tipe parental + tipe rekombinan (21+21) x 100% = 11.02% (284+55)+(21+21)

61 Jadi jarak gen untuk warna bunga dan gen untuk pollen adalah : PL 11.02

62 Rekombinasi dari F1 x F1 Data dari Bateson dan Punnett (F1 x F1 coupling) F1 PL/plxPL/pl (Purple, long) (Purple, long) F2: Purple, long (P_L_): (a1) Purple, round (P_ll): (a2) red, long(ppL_): (a3) red, round(ppll): (a4)

63 Data dari Bateson dan Punnett (F1 x F1 repulsion) F1 : Pl/pLxPl/pL (Purple, long) (Purple, long) F2: Purple, long (P_L_): (a1) Purple, round (P_ll): (a2) red, long(ppL_): (a3) red, round(ppll): (a4)

64 Rumus menghitung persentase rekombinasi apabila F1 heterosigot Z = Hasil kali tipe rekombinan Hasil kali tipe tetua Sehingga apabila F1 heterosigot dalam keadaan : * Coupling  Z = a2 x a3 a1 x a4 * Repulsion  Z = a1 x a4 a2 x a3

65 Data dari Bateson dan Punnett (F1 x F1 coupling) F1: PL/plxPL/pl (Purple, long) (Purple, long) F2: Purple, long (P_L_): 269(a1) Purple, round (P_ll): 19(a2) red, long(ppL_): 27(a3) red, round(ppll): 85(a4) Coupling  Z = 19 x 27 = 0, x 85 Nilai Z = 0,0238****

66 Interference Interference - the reduction in the expected number of crossovers at two adjacent genetic intervals Interferensi – interaksi antar pindah silang  Pindah silang pada tempat tertentu mengurangi kemungkinan terjadinya pindah silang pada daerah didekatnya.  Pindah silang di daerah I mengurangi terjadinya pindah silang pada daerah II  Mengakibatkan frekuensi pindah silang ganda lebih kecil dari yang diharapkan

67 coefficient of coincidence (c.o.c.) = ratio of observed to expected double crossovers Koefisien koinsidensi adalah ukuran dari kekuatan interferensi dan merupakan nisbah antara frekuensi pindah silang ganda yang diamati dan frekuensi pindah silang ganda yang diharapkan

68 Rumus atau KK = Banyaknya pindah silang ganda (DCO) yang sesungguhnya Banyaknya pindah silang ganda (DCO) yang diharapkan Interferensi = 1 - KK

69 Apabila interferensi sempurna (1,0) maka tidak ada pindah silang ganda yang dapat diamati Apabila semua pindah silang ganda yang diharapkan dapat diamati maka interferensinya nol (0)

70 Misalnya diketahui data sebagai berikut: Genotipe gamet Jumlah Fenotipe Dari F1 heterosigot individu V Gl Va235 normal v gl va270 mengkilat, steril sebagian, pucat V gl Va 7 mengkilat v Gl va 4 steril sebagian, pucat V gl va 62 mengkilat, steril sebagian v Gl Va 60 pucat V Gl va 40 steril sebagian v gl Va 48 mengkilat, pucat 726

71 Misalnya : Diketahui peta kromosom : VGl Va 18,3 13,6 31,9 SCO-1 (V-Gl) : 18,3% SCO-2 (Gl-Va) : 13,6% Pindah silang ganda yang diharapkan = SCO-1 x SCO-2 = 0,183 x 0,136 = 0,025 = 2,5%

72 Pindah silang ganda yang sebenarnya : 7+4= 1,5% 726 Sehingga Koefisien Koinsidensinya : KK = 1,5% = 0,6 2,5% Jadi Interferensinya : I = 1-KK = 1 – 0,6 = 0,4 = 40%

73 Calculating Interference Values From The Example v - ct = recombination frequency ct - cv = recombination frequency Expected double crossover frequency equal the product of the two single crossover frequency expected double crossover frequency = x = Total double crossovers = 1448 x = 12 Observed double crossovers = 8 c.o.c = 8/12 I for example = 100 x [1 -(8/12)] = 33% Most often I is between 0 and 1 indicating positive interference Occasionally I is greater than 1 indicating negative interference

74 Creighton and McClintock's Proof of Chromosomal Exchange During Crossing Over They used corn chromosome 9 markers: c = colorless seed wx = waxy endosperm They created a heterozygote with the following characteristics: repulsion configuration of genetic markers cytological landmarks on both ends of one chromosome They performed a testcross to this stock and analyzed the results.

75 If crossing over involves exchange of chromosomal material each recombinant chromosome would have on of the cytological landmarks. This is the result they obtained. See the figure below.

76


Download ppt "GENETIKA DASAR. POKOK BAHASAN 3 1. Pautan Gen 2. Pindah Silang 3. Pemetaan Kromosom."

Presentasi serupa


Iklan oleh Google