Numerical Methods Semester Genap tahun 2015/2016 M. Ziaul Arif Jurusan Matematika - FMIPA Lecture 3 : Roots of Nonlinear equation.

Slides:



Advertisements
Presentasi serupa
Design and Analysis of Algorithm Recursive Algorithm Analysis
Advertisements

Modul-8 : Algoritma dan Struktur Data
2. Introduction to Algorithm and Programming
PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION)
Pertemuan ke – 4 Non-Linier Equation.
Game Theory Purdianta, ST., MT..
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
TEKNIK PENGINTEGRALAN
Teorema Green.
Parabolas Circles Ellipses Presented by: 1.Ihda Mardiana H. 2.Hesti Setyoningsih 3.Dewi Kurniyati 4.Belynda Surya F.
BLACK BOX TESTING.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
1 Diselesaikan Oleh KOMPUTER Langkah-langkah harus tersusun secara LOGIS dan Efisien agar dapat menyelesaikan tugas dengan benar dan efisien. ALGORITMA.
Masalah Transportasi II (Transportation Problem II)
1 Pertemuan 10 Fungsi Kepekatan Khusus Matakuliah: I0134 – Metode Statistika Tahun: 2007.
BAB 6 KOMBINATORIAL DAN PELUANG DISKRIT. KOMBINATORIAL (COMBINATORIC) : ADALAH CABANG MATEMATIKA YANG MEMPELAJARI PENGATURAN OBJEK- OBJEK. ADALAH CABANG.
PERTEMUAN KE-6 UNIFIED MODELLING LANGUAGE (UML) (Part 2)
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
Dr. Nur Aini Masruroh Deterministic mathematical modeling.
1 Pertemuan 11 OPTIMASI KINERJA Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
1 HAMPIRAN NUMERIK SOLUSI PERSAMAAN LANJAR Pertemuan 5 Matakuliah: K0342 / Metode Numerik I Tahun: 2006 TIK:Mahasiswa dapat meghitung nilai hampiran numerik.
1 Pertemuan 5 Komunikasi antar Proses / Interprocess Communication (IPC) Matakuliah: T0316/sistem Operasi Tahun: 2005 Versi/Revisi: 5 OFFCLASS01.
Hampiran numerik fungsi (Interpolasi dan Regressi) Pertemuan 6
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Chapter 10 – The Design of Feedback Control Systems PID Compensation Networks.
Keuangan dan Akuntansi Proyek Modul 2: BASIC TOOLS CHRISTIONO UTOMO, Ph.D. Bidang Manajemen Proyek ITS 2011.
The eEquation of a Circle Adaptif Hal.: 2 Isi dengan Judul Halaman Terkait The eEquation of a Circle.
Grafika Komputer dan Visualisasi Disusun oleh : Silvester Dian Handy Permana, S.T., M.T.I. Fakultas Telematika, Universitas Trilogi Pertemuan 15 : Kurva.
BAB II : PENYELESAIAN AKAR-AKAR PERSAMAAN
Jartel, Sukiswo Sukiswo
KOMPUTASI FISIKA PART 2.
ALGORITMA SIMPLEX Adalah prosedure aljabar untuk mencari solusi optimal sebuah model linear programming, LP.
Linear algebra Yulvi zaika.
Pert. 16. Menyimak lingkungan IS/IT saat ini
KOMUNIKASI DATA Materi Pertemuan 3.
Recurrence relations.
Branch and Bound Lecture 12 CS3024.
Cartesian coordinates in two dimensions
Cartesian coordinates in two dimensions
Pengujian Hipotesis (I) Pertemuan 11
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Dasar-Dasar Pemrograman
Pertemuan ke – 4 Non-Linier Equation.
Parabola Parabola.
VECTOR VECTOR IN PLANE.
CSG3F3/ Desain dan Analisis Algoritma
BILANGAN REAL BILANGAN BERPANGKAT.
Algorithms and Programming Searching
Two-and Three-Dimentional Motion (Kinematic)
Pendugaan Parameter (II) Pertemuan 10
REAL NUMBERS EKSPONENT NUMBERS.
FACTORING ALGEBRAIC EXPRESSIONS
Recursive function.
PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION)
Fungsi Kepekatan Peluang Khusus Pertemuan 10
Master data Management
Disusun oleh : KARLINA SARI ( ) ALIFA MUHANDIS S A ( )
Analisis Korelasi dan Regresi Berganda Manajemen Informasi Kesehatan
Matematika PERSAMAAN KUADRAT Quadratic Equations Quadratic Equations
Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana
Ukuran Akurasi Model Deret Waktu Manajemen Informasi Kesehatan
How Can I Be A Driver of The Month as I Am Working for Uber?
Simultaneous Linear Equations
Lesson 2-1 Conditional Statements 1 Lesson 2-1 Conditional Statements.
SIMILES. The comparison is carried out using the words ‘like’ as etc. Example : 1. as free as a bird. The word ‘free’ is compared with the word ‘bird’
Right, indonesia is a wonderful country who rich in power energy not only in term of number but also diversity. Energy needs in indonesia are increasingly.
Pembelajaran Analisis (Teorema Nilai Rata-rata)
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
Transcript presentasi:

Numerical Methods Semester Genap tahun 2015/2016 M. Ziaul Arif Jurusan Matematika - FMIPA Lecture 3 : Roots of Nonlinear equation Lecture /161Numerical methods

Solution Methods Several ways to solve nonlinear equations are possible. Analytical Solutions – possible for special equations only Graphical Illustration – Useful for providing initial guesses for other methods Numerical Solutions – Open methods – Bracketing methods Lecture /16 2 Numerical methods

Solution Methods: Analytical Solutions Analytical solutions are available for special equations only. Lecture /16 3 Numerical methods

Graphical Illustration Graphical illustration are useful to provide an initial guess to be used by other methods Lecture /16 4 Root Numerical methods

Bracketing & Open Methods In bracketing methods, the method starts with an interval that contains the root and a procedure is used to obtain a smaller interval containing the root. – Examples of bracketing methods : Bisection method, false position In the open methods, the method starts with one or more initial guess points. In each iteration a new guess of the root is obtained. Lecture /16 5 Numerical methods

Solution Methods Many methods are available to solve nonlinear equations  Bisection Method  False position Method  Newton’s Method  Secant Method  Fixed point iterations – Muller’s Method – Bairstow’s Method – Chebyshev method Lecture /16 6 These will be covered. Numerical methods

Bisection Method The Bisection method is one of the simplest methods to find a zero of a nonlinear function. To use the Bisection method, one needs an initial interval that is known to contain a zero of the function. The method systematically reduces the interval. It does this by dividing the interval into two equal parts, performs a simple test and based on the result of the test half of the interval is thrown away. The procedure is repeated until the desired interval size is obtained. Lecture /16 7 Numerical methods

Intermediate Value Theorem Let f(x) be defined on the interval [a,b], Intermediate value theorem: if a function is continuous and f(a) and f(b) have different signs then the function has at least one zero in the interval [a,b] Lecture /16 8 ab f(a) f(b) Numerical methods

Bisection Algorithm Assumptions: f(x) is continuous on [a,b] f(a) f(b) < 0 Algorithm: Loop 1. Compute the mid point c=(a+b)/2 2. Evaluate f(c ) 3. If f(a) f(c) < 0 then new interval [a, c] If f(a) f( c) > 0 then new interval [c, b] End loop Lecture /16 9 a b f(a) f(b) c Numerical methods

Bisection Method Assumptions: Given an interval [a,b] f(x) is continuous on [a,b] f(a) and f(b) have opposite signs. These assumptions ensures the existence of at least one zero in the interval [a,b] and the bisection method can be used to obtain a smaller interval that contains the zero. Lecture /16 10 Numerical methods

Bisection Method Lecture /16 11 a0a0 b0b0 a1a1 a2a2 Numerical methods

Flow chart of Bisection Method Lecture /16 12 Start: Given a,b and ε u = f(a) ; v = f(b) c = (a+b) /2 ; w = f(c) is u w <0 a=c; u= wb=c; v= w is (b-a)/2 <ε yes no Stop no Numerical methods

Example: Answer: Lecture /16 13 Numerical methods

Stopping Criteria Two common stopping criteria 1.Stop after a fixed number of iterations 2.Stop when Lecture /16 14 Numerical methods

Analisa kekonvergenan metode biseksi Lecture /16Numerical methods15

Analisa Hampiran pertama terhadap akar persamaan yang diberikan oleh metode biseksi adalah Galat Mutlak hampiran pertama adalah adalah nilai-nilai hampiran berikutnya, Lecture /16Numerical methods16

Analisa maka Akan tetapi, Lecture /16Numerical methods17

Sehingga Dengan memperhatikan ketaksamaan di atas, dapat disimpulkan bahwa  Semakin kecil interval (a,b) semakin kecil galat mutlak di dalam hampiran  Semakin besar nilai n, semakin kecil galat mutlak dalam hampiran Analisa Lecture /16Numerical methods18

 Kekonvergenan metode bagi dua lambat  Batas galat tidak bergantung pada nilai fungsi yang dicari akarnya Analisa Lecture /16Numerical methods19

Contoh : Hitunglah berapa banyak iterasi yang diperlukan agar fungsi f(x) dapat dicari akarnya, jika diketahui, dan galat terbesarnya adalah Penyelesaian : misalkan n banyak iterasi yang diperlukan dalam mencari akar. Maka : Analisa Lecture /16Numerical methods20

Analisa Padahal, Karena galat paling besar adalah , berarti Lecture /16Numerical methods21

Maka, Jadi banyak iterasi adalah, Analisa Lecture /16Numerical methods22

Sehingga, Dengan demikian paling sedikit diperlukan iterasi sebanyak 27 iterasi untuk mendapatkan akar-akar dengan galat tersebut Analisa Lecture /16Numerical methods23

Lecture /16 24 Numerical methods

Bisection Method Initial Interval Lecture /16 25 a =0.5 c= 0.7 b= 0.9 f(a)= f(b) = Numerical methods

Lecture / ( )/2 = ( )/2 = 0.05 Numerical methods

Lecture / ( )/2= ( )/2=.0125 Numerical methods

Summary Initial interval containing the root [0.5,0.9] After 4 iterations – Interval containing the root [0.725,0.75] – Best estimate of the root is – | Error | < Lecture /16 28 Numerical methods

Bisection Method Programming in Matlab a=.5; b=.9; u=a-cos(a); v= b-cos(b); for i=1:5 c=(a+b)/2 fc=c-cos(c) if u*fc<0 b=c ; v=fc; else a=c; u=fc; end Lecture /16 29 c = fc = c = fc = c = fc = c = fc = Numerical methods

30 False Position Method x 2 defined as the intersection of x axis and x 0 f 0 -x 1 f 1 Choose [x 0,x 2 ] or [x 2,x 1 ], whichever is non-trivial Continue in the same way as bisection Compared to bisection: x 2 =(x 1 +x 0 )/2 Lecture /16Numerical methods

31 False Position (cont) Determine intersection point Using similar triangles: Lecture /16Numerical methods

32 False Position (cont) Alternatively, the straight line passing thru (x 0,f 0 ) and (x 1,f 1 ) Intersection: simply set y=0 to get x Lecture /16Numerical methods

33 Example kx k (Bisection) fkfk x k (False Position) fkfk ×10 -5 Lecture /16Numerical methods

Newton-Raphson Method (also known as Newton’s Method) Given an initial guess of the root x 0, Newton- Raphson method uses information about the function and its derivative at that point to find a better guess of the root. Assumptions: – f (x) is continuous and first derivative is known – An initial guess x 0 such that f ’(x 0 ) ≠0 is given Lecture /16 34 Numerical methods

Newton’s Method Lecture /16 35 X i+1 X i Numerical methods

Example Lecture /16 36 FN.m FNP.m Numerical methods

Results X = FNX = X = FNX =2.4495e-004 X = FNX =6.9278e-009 Lecture /16 37 Numerical methods

Secant Method Lecture /16 38 Numerical methods

Secant Method Lecture /16 39 Numerical methods

Example Lecture /16 40 Numerical methods

Example Lecture /16 41 Numerical methods

Results Lecture /16 42 Xi = -1 FXi =1 Xi = FXi = Xi = FXi = Xi = FXi =8.1695e-005 Xi = FXi =1.1276e-007 Numerical methods

Summary Bisection Reliable, Slow One function evaluation per iteration Needs an interval [a,b] containing the root, f(a) f(b)<0 No knowledge of derivative is needed Newton Fast (if near the root) but may diverge Two function evaluation per iteration Needs derivative and an initial guess x 0, f ’ (x 0 ) is nonzero Secant Fast (slower than Newton) but may diverge one function evaluation per iteration Needs two initial guess points x 0, x 1 such that f (x 0 )- f (x 1 ) is nonzero. No knowledge of derivative is needed Lecture /16 43 Numerical methods

Solving Non-linear Equation using Matlab Lecture /16 44 Example (i): find a root of f(x)=x-cos x, in [0,1] >> x-cos(x); >> fzero(f,[0,1]) ans = Example (ii): find a root of f(x)=e -x -x using the initial point x=1 >> exp(-x)-x; >> fzero(f,1) ans = Numerical methods

Solving Non-linear Equation using Matlab Lecture /16 45 Example (iii): find a root of f(x)=x 5 +x 3 +3 around -1 >> x^5+x^3+3; >> fzero(f,-1) ans = Because this function is a polynomial, we can find other roots >> roots([ ]) ans = i i i i Numerical methods

Use fzero Solver in Matlab Lecture /16 46 >>optimtool For example: want to find a root around -1 for x 5 +x 3 +3=0 The algorithm of fzero uses a combination of bisection, secant, etc. Numerical methods