Performance Comparison of Target PNN Classification for Beef and Pork Based on Gabor, PCA and LBP Features Lestari Handayani

Slides:



Advertisements
Presentasi serupa
Outline Materi Hubungan antara Comp. Vision, Grafika Komputer, Pengolahan Citra, dan Pengenalan Pola (Pattern Recognition) Domain Computer Vision Processing.
Advertisements

ABDUL WAHID TI UIN ALAUDDIN MAKASSAR
Pengenalan Pola 3 SKS Basuki Rahmat,S.Si,MT.
“Image Retrieval” Shinta P.
Recognition & Interpretation
Chapter 9 ALGORITME Cluster dan WEKA
FLOW INJECTION ANALYSIS (Analisis dalam sistem aliran)
PROGRAM STUDI TEKNIK INFORMATIKA UNIVERSITAS YUDHARTA PASURUAN
MULTILAYER PERCEPTRON
IMAM ZAENUDIN, Perbedaan Hasil Belajar Siswa Antara Pembelajaran Menggunakan Model Contextual Teaching and Learning (CTL) dan Pembelajaran Konvensional.
ANALISA PERANCANGAN SISTEM
Data Mining: Klasifikasi dan Prediksi Naive Bayesian & Bayesian Network . April 13, 2017.
Oleh: SARIPUDIN Jurusan SISTEM INFORMASI
The development of the software in this context is parallel processing or known as parallelization. In this parallel processing this software used.
Fuzzy for Image Processing
Proposal Tugas Akhir Pendekatan Supply Chain Risk Management pada Aktivitas Supply Chain PT. Garam Oleh : Nyka Fahma Utami Jurusan Teknik Industri.
1 Pertemuan 26 NEURO FUZZY SYSTEM Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
Fire and illegal logging in the Indonesia. The object sample is forest area in java In this final study about information system of collection area data.
Pengolahan Citra Dijital: Syllabus, Pengantar dan Aplikasi
1 INTRODUCTION Pertemuan 1 s.d 2 Matakuliah: A0554/Analisa dan Perancangan Sistem Informasi Akuntansi Tahun: 2006.
1. Pengantar Teori Komputasi
PENGOLAHAN CITRA DIGITAL : PENGENALAN POLA TEMPLATE MATCHING
Rizki Pebuardi G Pembimbing : 1. Ir. Agus Buono, M.Si., M.Kom.
Modul 1 PENGANTAR PENGOLAHAN CITRA
Pert. 16. Menyimak lingkungan IS/IT saat ini
Ida Wahyuni Wayan Firdaus Mahmudy
Image Segmentation.
DATAWAREHOUSING & BUSINESS INTELLIGENT <<Pertemuan – 12>>
Oleh: Ineza Nur Oktabroni (G )
DASAR – DASAR ROBOTIKA Rian Rahmanda Putra Fakultas Ilmu Komputer
Membangun Web Site“Cantik”
Metode Cluster Self-Organizing Map untuk Temu Kembali Citra
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
PEMBUATAN POHON KEPUTUSAN
“Making Analysis Online Website for Media Campaign at Alfatih Style Susliansyah for further detail, please visit
BAB VIII Representasi Citra
Pengaruh incomplete data terhadap
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
4. Disiplin Ilmu, Metode Penelitian dan Computing Methods
Data Mining.
Signal Processing Image Processing Audio Processing Video Processing
RESEARCH FIELDS BIDANG PENELITIAN.
Disiplin Ilmu, Metode Penelitian, Computing Method
the formula for the standard deviation:
PENGOLAHAN CITRA DIGITAL : PENGENALAN POLA TEMPLATE MATCHING
BAB IX Recognition & Interpretation
Signal Processing Image Processing Audio Processing Video Processing
ABDUL WAHID TI UIN ALAUDDIN MAKASSAR
W1. About Social Informatics
REKAYASA PERANGKAT LUNAK
PENGOLAHAN CITRA DIGITAL GES 5413
Rekayasa proses bisnis ie g3k3
Features / Ciri / Deskripsi Obyek
Introduction to Soft computing
THE EFFECT OF COOPERATIVE LEARNING TYPE JIGSAW PROBLEM SOLVING
3. The performance of a client-server system is influenced by two network factors: the bandwidth of the network (how many bits/sec it can transport) and.
Self-Organizing Network Model (SOM) Pertemuan 10
ABSTRACT Animation is an image or object processing which can be moved. Firstly, animation is made using paper sheet by sheet which is flipped until get.
PROSPEK DAN TANTANGAN TEKNOLOGI PEMBELAJARAN
Lab. Mekanika Fluida Teknik Mesin-FTUI  Dr.Ir. Harinaldi, M.Eng Fakultas Teknik Universitas Indonesia.
PENGARUH KEPEMIMPINAN TERHADAP KEPUASAN KERJA
UTILIZATION MODELLING OF RIVER WATER BODIES AND FLOODPLAINS FOR RAW WATER SOURCE By: Asep Suheri [P DOKTORAL PROGRAMS THE STUDY PROGRAM OF NATURAL.
Pembimbing : Aziz Kustiyo, S.Si., M.Kom. Endang Purnama Giri, S.Kom.
PENGOLAHAN CITRA DIGITAL : PENGENALAN POLA TEMPLATE MATCHING
HUG1S3/ PENGENALAN ILMU KOMPUTASI
KONTRAK PERKULIAHAN.
Speaking Strategies Applied by Students at “Kampung Inggris” in Pare Kediri Yudi Setyaningsih Universitas Ma Chung Malang.
Jaringan Komputer.
CALL PC EXPERT How to Remove Adware, Pop- up Ads from Web Browser.
Machine Learning Approach to Predict and Evaluate Banking’s Business Performance and Bankruptcy Bambang Siswoyo 1,2), Nanna Suryana 3), Zuraida Abbas 4.
Transcript presentasi:

Performance Comparison of Target PNN Classification for Beef and Pork Based on Gabor, PCA and LBP Features Lestari Handayani Informatics Engineering Department UIN SUSKA RIAU

Introduction Issue : In Indonesia, beef demand has reached tonnes (DIT JENNAK, 2012)…(increases every year)… Sometimes vendors mix pork and beef…(more profit) How can buyers to distinguish it? Differences in color, texture, fiber, type of fat, and smell. Solution: Image recognition based on color and texture features. (a). Beef (b). Pork (c). Beef and pork mixed

Feature Extractions Mean of HSV = 345,45 Mean of Texture = 124,40 Color extraction Texture extraction Today, I will compare 3 texture methods in PNN classification

Reseach Methodology 1.Data collection : images of beef, pork and mixed 2.Data analysis : data training, data testing 3.Image identification process of beef, pork and a mix of both : HSV for color, 3 texture extraction methods (PCA, Gabor, LBP) PNN clasification 4.Design and Analysis System 5.Implementation : Java Programming Language 6.Testing

Implementation

Results and Analysis MethodsSettingsTypes of dataAverage BeefPorkMix of both Gabor+HSV+ PNN 50% of data training : 50% of data testing, spread= %94.44%92.31%92.08% PCA+HSV+ PNN All data extracted on testing, spread= % % 93.93% LBP+HSV+ PNN 90% of data training : 10% of data testing, spread= % % 91.66%

Conclusions The texture and color features extracted from images can be effectively used for identification of beef, pork and a mix of both. This clearly shows the superiority of PCA+HSV+PNN over LBP+HSV+PNN and Gabor+HSV+PNN. The analysis has shown enhanced classification by selection of spread values for each feature. The recognizable mix of beef and pork is very good on PCA+HSV+PNN and LBP+HSV+PNN that is equal to 100%.

References Abdullah Iqbal a, Nektarios A. Valous a, Fernando Mendoza a, Da-Wen Sun a, Paul Allen b. Classification of pre- sliced pork and Turkey ham qualities based on image colour and textural features and their relationships with consumer responses. Meat Science 84: p 455– Ahmad Farid Hartono, Dwijanto, Zaenal Abidin. (2012). Implementasi Jaringan Syaraf Tiruan Backpropagation Sebagai Sistem Pengenalan Citra Daging Babi dan Citra Daging Sapi. UNNES Journal of Mathematics. Al-Qur’an Surah Al-Baqarah : 173 Al-Qur’an Surah Al Maidah : 4 Alim, M. K. (2006). Uji dan Aplikasi Komputasi Paralel pada Jaringan Syaraf Probabilistik (PNN) untuk Proses Klasifikasi Mutu Buah Tomat Segar. Undergraduated thesis of Computer Science Department, Institut Pertanian Bogor. Amjad Ali, Xiaojun Jing, Nasir Saleem. GLCM-Based Fingerprint Recognition Algorithm. Proceedings of IEEE IC- BNMT Connie, T., Jin, A. T. B., Ong, M. G. K., & Ling, D. N. C. (2005). An automated palmprint recognition system. Image and Vision Computing, 23(5), 501–515. doi: /j.imavis Connie, T., Teoh, A., Goh, M., & Ngo, D. (2003). Palmprint Recognition with PCA and ICA, (November), 227–232. Ditjennak Press Release Konfrensi Pers Direktur Jenderal Peternakan dan Kesehatan Hewan Tentang Supply Demand Daging Sapi/Kerbau Sampai Dengan Desember In, 5–7 Eleyan, A., & Demirel, H. (2006). PCA and LDA Based Face Recognition Using Feedforward Neural Network Classifier, 199–206. Ella, L.P Abeigne. Bergh, F.van den. Wyk, B.J. van. A comparison of texture feature algorithms for urban settlements classification. IEEE Ford, A., & A. Roberts. (1998).” Colour Space Conversions”, 1998, 1–31. (18 Oktober 2014). Gang Liu, Robert Wang, YunKai Deng, Runpu Chen, Yunfeng Shao, and Zhihui Yuan. A New Quality Map for 2-D Phase Unwrapping Based on Gray Level Co-Occurrence Matrix. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 11, NO Hartono, A. F., Dwijanto, & Abidin, Z. (2012). Implementasi Jaringan Syaraf Tiruan Backpropagation Sebagai Sistem Pengenalan Citra Daging Babi dan Citra Daging Sapi. Unnes Journal of Mathematics Vol.1, Issue 2. Huang, H. (2013). “Non-Destructive Detection Of Pork Intramuscular Fat Content Using Hyperspectral Imaging”, McGill University, Canada.

References Huang, Hui., Liu, Li., Ngadi, M.O., Gariépy, C., and Prasher, S.O. (2014). “Near-Infrared Spectral Image Analysis of Pork Marbling Based on Gabor Filter and Wide Line Detector Techniques”. Applied Spectroscopy, Vol 68, Issue 3, pp Kadir, A., & Adhi, S. (2012). Pengolahan Citra Teori dan Aplikasi. Yogyakarta: Andi. Kiswanto. (2012). Identifikasi Citra untuk Mengidentifikasi Jenis Daging Sapi Dengan Menggunakan Transformasi Wavelet Haar. Thesis of Information System Magister. Universitas Diponegoro, Malang. Indonesia L P Abeigne, Ella, Wyk B J Van, Bergh F. Van Den, And Wyk A., M. Van “A Comparison Of Texture Feature Algorithms For Urban Settlement Classication,” 1308–11. Mirzapour, Fardin. Ghassemian, Hassan. Using GLCM and Gabor Filters for Classification of PAN Images. IEEE Mishra, M., Jena, A. R., & Das, R. (2013). A Probabilistic Neural Network Approach For Classification Of Vehicle, 2(7), 367– 371. Nektarios A. Valous, Fernando Mendoza, Da-Wen Sun, Paul Allen. Texture appearance characterization of pre-sliced pork ham images using fractal metrics: Fourier analysis dimension and lacunarity. Food Research International 42 (2009) 353– Putra, I. D. (2009). Identifikasi Tanda Tangan Menggunakan Probabilistic Neural Networks (PNN) Dengan Praproses Menggunakan Transformasi WaveletIdentifikasi Tanda Tangan Menggunakan Probabilistic Neural Networks (PNN) Dengan Praproses Menggunakan Transformasi Wavelet. Undergraduated thesis of Computer Science Department, Institut Pertanian Bogor. Specht, D. F. (1990). Probabilistic Neural Networks. Neural Network Journal, Vol 3, pp T.Ojala, M.Piatik¨ainen, T.M¨aenp¨a¨ a. Multiresolution grey-scale androtation invariant texture classification with local binary pattern. IEEE Transactions on Pattern Analysis and Machine Intelligence 24: p 7971– Wahyudi, E., Kusuma, H., & Wirawan. (2011). Perbandingan Unjuk Kerja Pengenalan Wajah Berbasis Fitur Local Binary Pattern dengan Algoritma PCA dan Chi Square. Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember (ITS), Indonesia. Wang Zhi-Zhong and Jun-Hai Yong. Texture Analysis and Classification With Linear Regression Model Based on Wavelet Transform. IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 8, AUGUST 2008 Widowati, W. (2011). Perbandingan classifier untuk identifikasi citra tanaman hias. Undergraduated thesis of Computer Science Department, Institut Pertanian Bogor. Yang Bo, Chen Song Can. A comparative study on local binary pattern (LBP) based face recognition: LBP histogram versus LBP image. Neurocomputing120: p 365– Yang, J. (2011). Advanced Biometric Technologies. Yong-jun LIU, Cui-jian ZHAO, Su-jing SUN, Su-jing SUN. “Image Texture Recognition Method Research Based on Wavelet Technology

THANK YOU