Portofolio Multi Objektif

Slides:



Advertisements
Presentasi serupa
IX. SIFAT-SIFAT OPSI SAHAM
Advertisements

OVERVIEW Manfaat diversifikasi internasional.
OVERVIEW 1/27 Bab ini membahas tahapan penting dalam proses investasi, yaitu tahap evaluasi kinerja portofolio. Dalam tahap ini pertanyaan mendasar yang.
Manajemen dan Pengukuran Kinerja Portfolio
RISK AND RETURN RISK (RISIKO), DIDEFINISIKAN DALAM KAMUS WEBSTER’S SEBAGAI “KECELAKAAN”, BAHAYA; DIHADAPKAN PADA KERUGIAN ATAU KECELAKAAN. RISIKO SERING.
Lecture Note: Trisnadi Wijaya, S.E., S.Kom
Return dan risiko PORTOFOLIO AKTIVA TUNGGAL
PEMBENTUKAN PORTOFOLIO OPTIMAL PADA SAHAM YANG TERCATAT DALAM INDEK LQ-45 (Periode Agustus 2007 – Juli 2008) Oleh Yanto Syafi’ie
ANALISIS PORTOFOLIO SAHAM DENGAN MODEL INDEKS TUNGGAL (Studi Pada Saham-Saham JII Periode 2007) Oleh Lia Oktorina
Lecture Note: Trisnadi Wijaya, S.E., S.Kom
TEORI PORTOFOLIO Oleh Julius Nursyamsi.
STRUKTUR MODAL (CAPITAL STRUCTURE)
Portofolio Optimal atau Strategi Portofolio
Astra Agro Lestari Tbk (AALI), Sekuritas PT PP London Sumatera Tbk (LSIP) dan Analisis Portofolio Sekuritas Pada Sektor Perkebunan: Studi Kasus Sekuritas.
ANALISIS INVESTASI DAN MANAJEMEN PORTOFOLIO
RETURN DAN RISIKO DALAM INVESTASI
TEORI PORTOFOLIO DAN HASIL PENGEMBALIAN
MATERI # 5 PEMILIHAN PORTFOLIO
Return dan Risiko Portofolio
Reksa Dana Pertemuan 10.
UNIVERSITAS PARAMADINA Program magister bisnis & keuangan islam
RISIKO & DIVERSIFIKASI Pertemuan 24
Return dan risiko AKTIVA TUNGGAL
RISIKO DALAM INVESTASI
Dian Safitri P. Koesoemasari
PENILAIAN HARGA WAJAR SAHAM DENGAN MENGGUNAKAN METODE DIVIDEND DISCOUNT MODEL (DDM) UNTUK PENGAMBILAN KEPUTUSAN DALAM BERINVESTASI SAHAM DI BURSA EFEK.
Ekonomi Manajerial Bab 12 Evaluasi Kinerja POrtofolio
PENILAIAN SAHAM DAN STRATEGI PORTFOLIO SAHAM
* RETNO B. LESTARI07/16/96 B 8 Manajemen Kas A B PENGANTAR EKONOMI*
BIAYA MODAL (COST OF CAPITAL)
RISIKO & RETURN MANAJEMEN KEUANGAN.
Teori Portofolio.
Pengembalian atas Investasi
OVERVIEW Manfaat diversifikasi internasional.
INVESTASI Rita Tri Yusnita
Manajemen Keuangan Drs. Dihin Septyanto, ME.
PERTEMUAN MINGGU 2 RESIKO DAN HASIL PADA ASSETS
Portofolio Mean Varian
Risk & Return.
STRUKTUR MODAL (CAPITAL STRUCTURE)
RETURN DAN RISIKO DALAM INVESTASI
RISIKO DALAM INVESTASI
Pertemuan 1 The Investment Setting
Manajemen dan Pengukuran Kinerja Portfolio
Konsep Dasar Investasi
Portofolio Min Risk Dua Konstrain.
Return & risk.
Analisis Portofolio Portofolio merupakan serangkaian kombinasi beberapa aktiva yang di investasikan dan di pegang oleh pemodal, baik perorangan maupun.
Penentuan Portofolio Yang Optimal Dengan Pendekatan Utilitas
Analisis Investasi Interest Rate Model.
PORTFOLIO MANAGEMENT & EVALUATION
INTERNATIONAL PORTOFOLIO AND INVESTMENT
Return(Tingkat Pengembalian) dan risiko
Manajemen dan Pengukuran Kinerja Portfolio
ANALISIS KEPUTUSAN INVESTASI (CAPITAL BUDGETING)
Manajemen Investasi.
RESIKO DAN HASIL PADA ASSET
RETURN DAN RISIKO INVESTASI
BAB IV DAN V RETURN YANG DIHARAPKAN DAN RISIKO PORTOFOLIO
Informasi pasar dalam analisis keuangan
Pengukuran Risk & Return
Return(Tingkat Pengembalian) dan risiko
DENGAN MENGGUNAKAN MODEL INDEKS TUNGGAL
BAB 3 Rita Tri Yusnita, SE., MM.. KONSEP DASAR RISK & RETURN.
RISIKO DALAM INVESTASI
PENGARUH RETURN ON EQUITY (ROE) DAN PRICE TO BOOK VALUE (PBV) TERHADAP RETURN SAHAM PADA EMITEN GRUP BAKRIE YANG TERDAFTAR DI BURSA EFEK INDONESIA Aditya.
RISK & RETURN Ahsan Sumantika, S.E., M.Sc.
RISIKO DALAM INVESTASI
Pengaruh Dividend Payout Ratio dan Return On Investment Terhadap Harga Saham (Studi Kasus Pada Perusahaan Manufaktur Yang Terdaftar Di Bursa Efek Indonesia)
RISIKO DALAM INVESTASI Oleh Julius Nursyamsi. Pendahuluan Masalah yang dihadapi pembuat keputusan adalah : Risiko Ketidakpastian.
Transcript presentasi:

Portofolio Multi Objektif

Memaksimumkan return dan meminimumkan risiko Maks Rp = rT w dan Min σp =w TΣw Dengan syarat 1Tw = 1 Tujuan investasi yaitu meminimumkan risiko portofolio σp =w TΣw dan memaksimumkan expected return portofolio Rp = rT w adalah ekuivalen dengan meminimumkan negatif expected return portofolio Rp = -rT w dan risiko portofolio σp = w TΣw Min (-rT w, w TΣw) , Dengan syarat 1Tw =1

Optimisasi multi-objective ini dapat diselesaikan dengan skalarisasi yang merupakan suatu teknik standar untuk menemukan poin-poin optimal untuk setiap permasalahan pengoptimuman vektor. Dengan memberikan dua koefisien pembobotan a1 dan a2 > 0 Minimum –a1 rTw + a2 w TΣw , Dengan syarat 1Tw =1. Dengan mengambil a1 =1 dan a2 = k > 0, diperoleh modifikasi dari model 5 sebagai berikut : Minimum – rTw + k w TΣw

Koefisien pembobot k menunjukkan seberapa besar seorang investor mengambil risiko atas expected return. Seorang investor dapat mempertimbangkan sebagai konstanta atau indeks risk aversion (menghindari risiko) yang mengukur toleransi risiko dari seorang investor. Nilai k yang kecil mengindikasikan bahwa investor tersebut termasuk investor yang tidak menghindar terhadap risiko (risk seeking) Sedangkan nilai k yang semakin besar, mengindikasikan bahwa investor tersebut makin menghindari risiko (risk averse).

Jika k 0 (kecil), variansi portofolio kwTΣw 0 (akan menuju nol) dan fungsi sasarannya didominasi oleh meminimalkan expected returnnya -rTw. Hal ini sama seperti memaksimumkan expected return dan mengindahkan risiko. Dalam hal ini, investor yang demikian merupakan investor yang extremely risk seeking. Jika k ∞ (besar), maka nilai kwTΣw∞. Fungsi sasarannya didominasi oleh variansi kwTΣw, jauh lebih besar dibandingkan dengan expected return. Hal ini berarti investor menginginkan untuk meminimumkan risiko tanpa mengindahkan expected returnnya. Investor yang berlaku demikian merupakan investor yang extremely risk averse.

Tentu saja sangat menarik jika investor dapat mensimulasikan berbagai macam nilai k, untuk mendapatkan variasi bobot portofolio yang dapat dijadikan pilihan investor. Dengan memberikan berbagai nilai k, dapat dihasilkan berbagai macam model optimisasi yang memberikan masukan kepada investor tentang segala toleransi risiko. Selanjutnya investor dalam memilih portofolionya, sesuai dengan indeks resiko yang akan ditoleransinya.

Permasalahan optimisasi multi-objective di atas dapat diselesaikan dengan bantuan fungsi Lagrange sebagai berikut : L = – rTw + k wTΣw + λ (1Tw-1) Kasus di atas termasuk kasus dengan satu pengali Lagrange. Untuk mendapatkan penyelesaian nilai optimal dari w, persamaan di atas diturunkan terhadap w dan kemudian hasilnya disamakan dengan nol. Hasil penurunannya sebagai berikut: δL/δw = – r + 2k Σw + λ 1p = 0

Dengan melakukan transpose hasil di atas, akan diperoleh : 2kΣw = r- λ1p w = 1/(2k) Σ-1(r- λ1p) Substitusi persamaan di atas ke persamaan 1pTw =1, 1pTw = 1/(2k) 1pT Σ-1(r- λ1p) =1 Hasilnya : 1/(2k) 1pT Σ-1 λ1p =1/(2k) 1pT Σ-1 r – 1 λ = (1/(2k) 1pT Σ-1 r – 1)/( 1/(2k) 1pT Σ-11p)

Substitusikan kembali nilai λ di atas ke persamaan w di atas, diperoleh hasil sebagai berikut : Berdasarkan rumus di atas, dapat dihitung bobot portofolio untuk berbagai nilai k yang diberikan.

Data yang digunakan pada studi kasus ini adalah data harga saham penutupan Astra Internasional Tbk., Bank Rakyat Indonesia, Telekomunikasi Indonesia Tbk, dan Bakrie Sumatra Plantations Tbk. yang diambil dalam rentang waktu 11 bulan mulai 2 Januari 2007 s/d 21 November 2007. Saham Expected Return Variansi ASII 0.00188 0.0006 BBRI 0.00174 TLKM 0.00010 0.0004 UNSP 0.00407 0.0010

Tabel di bawah ini menunjukkan berapa besar prosentase (%) dana yang diinvestasikan oleh investor untuk tiap saham pada portofolio dengan nilai k yang berbeda-beda. Nilai k disimulasi dari k = 0.01 sampai dengan k = 1000. Untuk k > 1000, hasil portofolio sudah relatif stabil. Saham k = 0.01 k = 2 k = 10 k = 50 k = 100 k = 1000 ASII 0.0000 0.0283 0.1974 0.1765 0.1739 0.1715 BBRI 0.1687 0.3010 0.2337 0.2253 0.2177 TLKM 0.1996 0.4319 0.4610 0.4871 UNSP 1.0000 0.8030 0.3021 0.1579 0.1399 0.1237

Seorang investor yang memilih bobot portofolio dengan k = 0 Seorang investor yang memilih bobot portofolio dengan k = 0.01 adalah investor yang highly risk seeking, dan portofolio yang optimal untuk investor jenis ini adalah dengan mengalokasikan 100% dananya pada saham yang memilki expected return tertinggi yaitu saham Bakrie Sumatra Plantations Tbk (UNSP). Tentu saja saham UNSP juga memiliki resiko yang paling tinggi diantara ke empat saham di atas. Bahkan untuk nilai k = 2, terlihat bahwa saham Telkom yang memiliki harapan keuntungan paling rendah, masih belum dapat masuk ke dalam portofolio. Portofolio terdiri dari 3 saham, dengan komposisi prosentase terbesar masih didominasi saham UNSP sebesar 80%, sedangkan prosentase saham ASII baru sekitar 3%, saham BBRI sekitar 17%.

Dengan meningkatnya nilai k, investor menjadi lebih sensitif untuk mengambil risiko, dan komposisi portofolio mulai menunjukkan campuran dari saham-saham yang memiliki expected return tinggi dan risiko rendah. Ketika k = 50, strategi portofolio optimal menunjukkan bahwa investor perlu menginvestasikan dananya pada bermacam-macam asset, pada contoh ini investor perlu menginvestasikan 17.65% dari total dana pada saham ASII, 23.37% pada saham BBRI, 43.19% pada saham TLKM, dan 15.79% pada saham UNSP. Alokasi pada saham UNSP secara signifikan sudah berkurang dari 100% menjadi 15.79% dengan meningkatnya nilai k dari 0.01 menjadi 50 karena saham UNSP memiliki variansi tertinggi.

Misalkan dana yang kita miliki dan akan kita investasikan untuk membeli saham tersebut sebesar Rp 70.000.000,00. Dengan mengambil nilai k=100, akan diperoleh besarnya dana yang akan diinvestasikan pada masing-masing saham dengan menggunakan ketiga metode di atas.

Sekuritas   Mean Variance Multi-Objective k = 100 Harga Saham Investasi Total Jumlah Saham ASII 23000 11984000 521 12173000 529 BBRI 7200 15183000 2109 15771000 2190 TLKM 10100 34300000 3396 32270000 3195 UNSP 2125 8533000 4016 9793000 4608 Jumlah 70000000 70007000

Dengan melakukan pengamatan selama 10 hari, akan didapatkan hasil sebagai berikut    Min Variansi Skalarisasi 11/22/2007 Rp132,415 Rp118,469 11/23/2007 Rp34,795 Rp68,311 11/26/2007 Rp2,230,489 Rp2,382,035 11/27/2007 Rp1,372,736 Rp1,548,424 11/28/2007 Rp1,882,572 Rp2,005,966 11/29/2007 Rp3,962,002 Rp3,988,752 11/30/2007 Rp2,778,304 Rp2,885,160 12/4/2007 Rp6,092,829 Rp6,225,509 12/5/2007 Rp6,923,923 Rp6,976,291

Dapat dilihat dari tabel capital gain di atas, dalam waktu 10 hari anda bisa memperoleh keuntungan 7 juta atau sekitar 10% dari modal awal anda. Ketiga metode di atas memberikan hasil yang relatif sama. Hal ini dapat dimengerti karena pada metode multiobjektif kita memilih strategi yang lebih mengarah pada pilihan k = 100, yaitu meminimalkan resiko. Jadi alokasi portofolio ketiga strategi di atas relatif sama, sehingga tidak mengherankan jika hasilnya pun juga relatif sama.